Treatment options for COVID-19 remain limited. Here, we report the optimization of an siRNA targeting the highly conserved leader region of SARS-CoV-2. The siRNA was rendered nuclease resistant by the introduction of modified nucleotides without loss of activity. Importantly, the siRNA also retained its inhibitory activity against the emerged omicron sublineage variant BA.2, which occurred after the siRNA was designed and is resistant to other antiviral agents such as antibodies. In addition, we show that a second highly active siRNA designed against the viral 5'-UTR can be applied as a rescue molecule, to minimize the spread of escape mutations. We therefore consider our siRNA-based molecules to be promising broadly active candidates for the treatment of current and future SARS-CoV-2 variants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2024.105879DOI Listing

Publication Analysis

Top Keywords

sirna designed
8
sirna
5
development highly
4
highly stable
4
stable active
4
active small
4
small interfering
4
interfering rna
4
rna broad
4
broad activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!