Background: Partial or total release of the posterior cruciate ligament (PCL) is often performed intraoperatively in cruciate-retaining total knee arthroplasty (CR-TKA) to alleviate excessive femoral rollback. However, the effect of the release of selected fibers of the PCL on femoral rollback in CR-TKA is not well understood. Therefore, we used a computational model to quantify the effect of selective PCL fiber releases on femoral rollback in CR-TKA.

Methods: Computational models of 9 cadaveric knees (age: 63 years, range 47 to 79) were virtually implanted with a CR-TKA. Passive flexion was simulated with the PCL retained and after serially releasing each individual fiber of the PCL, starting with the one located most anteriorly and laterally on the femoral notch and finishing with the one located most posteriorly on the medial femoral condyle. The experiment was repeated after releasing only the central PCL fiber. The femoral rollback of each condyle was defined as the anterior-posterior distance between tibiofemoral contact points at 0° and 90° of flexion.

Results: Release of the central PCL fiber in combination with the anterolateral (AL) fibers, reduced femoral rollback a median of 1.5 [0.8, 2.1] mm (P = .01) medially and by 2.0 [1.2, 2.5] mm (P = .04) laterally. Releasing the central fiber alone reduced the rollback by 0.7 [0.4, 1.1] mm (P < .01) medially and by 1.0 [0.5, 1.1] mm (P < .01) laterally, accounting for 47 and 50% of the reduction when released in combination with the AL fibers.

Conclusions: Releasing the central fibers of the PCL had the largest impact on reducing femoral rollback, either alone or in combination with the release of the entire AL bundle. Thus, our findings provide clinical guidance regarding the regions of the PCL that surgeons should target to reduce femoral rollback in CR-TKA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2024.03.072DOI Listing

Publication Analysis

Top Keywords

femoral rollback
32
pcl fiber
12
releasing central
12
femoral
10
rollback
9
pcl
9
posterior cruciate
8
cruciate ligament
8
cruciate-retaining total
8
total knee
8

Similar Publications

Background: Ultracongruent (UC) total knee replacement (TKR) designs, serving as alternatives to posterior stabilized (PS) and cruciate retaining (CR) designs, lack conclusive evidence regarding posterior femoral rollback. This study aimed to compare intraoperative posterior femoral rollback and maximal knee flexion between UC and PS inserts, addressing the paucity of literature on femoral rollback achieved with UC designs in total knee replacement.

Methods: A consecutive cohort of 20 patients undergoing robotic-assisted primary total knee replacement, posterior femoral rollback and maximal intraoperative knee flexion were assessed.

View Article and Find Full Text PDF

Purpose: The efficacy of medial pivot total knee arthroplasty (MP TKA) in treating valgus knees that may cause medial instability is unknown. The purpose of this study was to investigate the in vivo kinematics of MP TKA for the valgus knees and compare them to those for the varus knees.

Methods: The kinematics of 19 valgus knees and 19 varus knees operated in the MP TKA were investigated under fluoroscopy during squatting using a two- to three-dimensional registration technique.

View Article and Find Full Text PDF

Bi-cruciate stabilized total knee arthroplasty restores the native knee alignments better than conventional posterior stabilized total knee arthroplasty.

Arch Orthop Trauma Surg

December 2024

Department of Orthopaedic Surgery, Seoul National University College of Medicine, Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, South Korea.

Introduction: This study aimed to compare the differences in the radiological, clinical, and functional outcomes and the estimated restoration rate of native knee alignment between total knee arthroplasty (TKA) with bi-cruciate stabilized (BCS) and posterior stabilized (PS) design.

Materials And Methods: This retrospective study included consecutive patients between 2020 and 2021 who underwent TKA. The patients were divided into two groups (group I, Journey II BCS TKA [106 knees]; group II, Persona PS TKA [106 knees]) after 1:1 propensity score matching.

View Article and Find Full Text PDF

Purpose: This work developed a novel preclinical test of total knee replacements (TKRs) in order to explain TKR instability linked to patient dissatisfaction. It was hypothesized that stability tests on the isolated moving prostheses would provide novel comparative data on the stability and kinematics among TKR designs.

Methods: Three TKR designs, DePuy Synthes Attune MS, Stryker Triathlon and Zimmer Biomet Persona MC, were assessed using a robotic arm while flexing-extending 0-140°.

View Article and Find Full Text PDF

Background: The non-implanted knee differs in comparison to total knee arthroplasty (TKA) designs, with regard to asymmetry and functionality of the anterior cruciate ligament and the posterior cruciate ligament. While surgeons may choose to implant either posterior stabilized (PS) or bi-cruciate stabilized (BCS) TKAs, substituting for one or both cruciate ligaments, the effects of symmetry versus asymmetry in substituting TKA designs have not been widely analyzed to determine possible benefits. Therefore, the objective of this research study was to determine if either TKA asymmetry and/or anterior ligament stabilization can lead to more normal-like kinematics and clinical benefit for patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!