The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16Â ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.131176 | DOI Listing |
Phytochem Anal
December 2024
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Introduction: Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP.
View Article and Find Full Text PDFMol Med
December 2024
Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.
View Article and Find Full Text PDFSci Rep
December 2024
Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Dental Disease Prevention and Treatment Center of Minhang District, Shanghai 201103, China. Electronic address:
Background: Periodontitis, a chronic inflammatory disease, poses challenges in treatment due to its complex etiology. Tripterygium glycosides (TGs), renowned for their immunosuppressive and anti-inflammatory capabilities, present a prospective therapeutic option for the management of periodontitis. This study delves into the therapeutic efficacy of TGs in periodontitis and reveals the fundamental mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!