The depleting supply of natural sources of rare earth elements (REE) is a concern to many nations as demand for advanced technology is becoming vital for national security. In this communication, the recovery of dysprosium(III) from aqueous systems was exemplified by a modified phosphorylated chitosan (PCs/MB) prepared by the C-Mannich reaction of phosphorylated chitosan, glutaraldehyde, and 4-hydroxycoumarin in ethanolic solution. Batch adsorption studies achieved a maximum adsorption capacity (q) of 34 mg/g at 25 °C and pH = 5.4 for 2 h. Fourier Transform-Infrared Spectroscopy, elemental mapping, and quantitative analyses revealed ion-exchange mechanism with C6-phosphate and a synergistic complexation with the amino group between two hexose units of the chitosan chain confirming the correlation provided by the pseudo-second order kinetics (R = 0.9996), extrapolated mean free energy of adsorption (E) of 12.9 kJ/mol from the corrected Dubinin-Radushkevich isotherm, and the extrapolated enthalpy of adsorption (ΔH) of -42.4 kJ/mol from the linearized Van't Hoff plot. Competitive adsorption with iron(II), cerium(III), and neodymium(III) demonstrated preferential removal of dysprosium(III) and complete exclusion of iron(II), which illustrates potential application in the separation of REE from electronic wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131449DOI Listing

Publication Analysis

Top Keywords

phosphorylated chitosan
12
recovery dysprosiumiii
8
adsorption
5
opportunity greener
4
greener recovery
4
dysprosiumiii secondary
4
secondary sources
4
sources novel
4
novel mannich
4
mannich reaction-modified
4

Similar Publications

Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1 macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties.

View Article and Find Full Text PDF

Objectives: The modern approach to managing noncavitated white spot lesions (WSLs) emphasizes noninvasive strategies and biomimetic remineralization. Biomimetic scaffolds are designed to regenerate dental tissues rather than simply repair them. This study aimed to assess lesion depth, enamel structure, and the elemental composition of artificially induced WSLs after treatment with biomimetic remineralization techniques.

View Article and Find Full Text PDF

Insect chitosan derived from Hermetia illucens larvae suppresses adipogenic signaling and promotes the restoration of gut microbiome balance.

Int J Biol Macromol

January 2025

Major of Human Bio-convergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Chitosan, the deacetylated form of chitin, is considered a valuable source of compounds in the feed and food industries. However, the impact of Hermetia illucens larvae chitosan (HCS) with specific physicochemical characteristics on obesity mediated by lipid accumulation and microbiome dysbiosis has not been fully elucidated. We purified HCS with a low molecular weight (84 kDa), low crystallinity, and a high deacetylation rate, characterizing it through several analytical techniques, including gel permeation chromatography, FT-IR, H NMR, FE-SEM, and XRD analysis.

View Article and Find Full Text PDF

Tripolyphosphate-chitosan-pea protein interactions confers long-term stability to 3D printed high internal phase Pickering emulsions.

Food Chem

February 2025

Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia. Electronic address:

This research explores the interactions of tripolyphosphate-chitosan-pea protein (TPP-CS-PP) in improving the stability and storage of 3D printing food inks. Chitosan (CS) and pea protein (PP) were complexed at various concentrations with 80 % palm olein to produce high internal phase Pickering emulsions (HIPPEs) 3D printing food inks. The resulting CSPP HIPPEs exhibited shear-thinning behaviour and the flexibility to switch between solid and liquid states, ideal for 3D printing.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on evaluating the wound healing properties of a chitosan-based hydrogel with pyroligneous acid in diabetic mice, addressing the challenge of excessive inflammation in diabetic wounds.
  • Pyroligneous acid, derived from palm kernel shell biomass, contains compounds that may enhance the healing process, as evidenced by improved wound contraction and tissue response in treated animals.
  • Results showed that the hydrogel significantly accelerated healing in a dose-dependent manner, with the highest dose producing effects comparable to standard treatments, while also promoting important signaling pathways involved in tissue regeneration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!