Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tryptophan-like fluorescence (TLF) is used to indicate anthropogenic inputs of dissolved organic matter (DOM), typically from wastewater, in rivers. We hypothesised that other sources of DOM, such as groundwater and planktonic microbial biomass can also be important drivers of riverine TLF dynamics. We sampled 19 contrasting sites of the River Thames, UK, and its tributaries. Multivariate mixed linear models were developed for each site using 15 months of weekly water quality observations and with predictor variables selected according to the statistical significance of their linear relationship with TLF following a stepwise procedure. The variables considered for inclusion in the models were potassium (wastewater indicator), nitrate (groundwater indicator), chlorophyll-a (phytoplankton biomass), and Total bacterial Cells Counts (TCC) by flow cytometry. The wastewater indicator was included in the model of TLF at 89 % of sites. Groundwater was included in 53 % of models, particularly those with higher baseflow indices (0.50-0.86). At these sites, groundwater acted as a negative control on TLF, diluting other potential sources. Additionally, TCC was included positively in the models of six (32 %) sites. The models on the Thames itself using TCC were more rural sites with lower sewage inputs. Phytoplankton biomass (Chlorophyll-a) was only used in two (11 %) site models, despite the seasonal phytoplankton blooms. It is also notable that, the wastewater indicator did not always have the strongest evidence for inclusion in the models. For example, there was stronger evidence for the inclusion of groundwater and TCC than wastewater in 32 % and 5 % of catchments, respectively. Our study underscores the complex interplay of wastewater, groundwater, and planktonic microbes, driving riverine TLF dynamics, with their influence determined by site characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172285 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!