In recent times, the application of biochar (BC) as an upcoming catalyst for the elimination of recalcitrant pollutants has been widely explored. Here, an iron loaded bamboo biochar activated peroxymonosulphate (PMS) process was tested for removing Congo red (CR) dye from water medium. The catalyst was synthesized using a green synthesis method using neem extracts and characterized using SEM, FTIR, and XRD. The effects of various operating parameters, including solution pH, catalyst dosage, and pollutant dosage, on dye degradation efficiency were examined. The results showed that at the optimized conditions of 300 mg L PMS concentration, 200 mg L catalyst dosage, and pH 6, about 89.7% of CR dye (initial concentration 10 ppm) was removed at 60 min of operation. Scavenging experiments revealed the significant contribution of O, OH, and O for dye degradation, with a major contribution of O. The activation of PMS was mainly done by biochar rather than iron (loaded on biochar). The catalyst was highly active even after four cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141945 | DOI Listing |
Lett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFBioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFEnviron Res
January 2025
Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea. Electronic address:
Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.
View Article and Find Full Text PDFAmino Acids
January 2025
Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!