DAMPs and DAMP-sensing receptors in inflammation and diseases.

Immunity

Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China. Electronic address:

Published: April 2024

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2024.03.002DOI Listing

Publication Analysis

Top Keywords

damp-sensing receptors
8
inflammation diseases
8
cellular damage
8
damage stress
8
innate immune
8
role inflammation
8
damps
7
damps damp-sensing
4
receptors inflammation
4
diseases
4

Similar Publications

Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications.

View Article and Find Full Text PDF

DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways.

Nat Rev Immunol

October 2024

Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.

Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases.

View Article and Find Full Text PDF

DAMPs and DAMP-sensing receptors in inflammation and diseases.

Immunity

April 2024

Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China. Electronic address:

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response.

View Article and Find Full Text PDF

Study of the initial steps of the CD95-mediated signaling pathways is a field of intense research and a long list of actors has been described in the literature. Nonetheless, the dynamism of protein-protein interactions (PPIs) occurring in the presence or absence of its natural ligand, CD95L, and the cellular distribution where these PPIs take place render it difficult to predict what will be the cellular outcome associated with the receptor engagement. Accordingly, CD95 stimulation can trigger apoptosis, necroptosis, pyroptosis, or pro-inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphatidylinositol-3-kinase (PI3K).

View Article and Find Full Text PDF

GPR34-mediated sensing of lysophosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair.

Immunity

June 2021

Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Neutrophils migrate rapidly to damaged tissue and play critical roles in host defense and tissue homeostasis. Here we investigated the mechanisms whereby neutrophils participate in tissue repair. In an intestinal epithelia injury model, neutrophil depletion exacerbated colitis and associated with reduced interleukin (IL)-22 and limited activation of type 3 innate lymphoid cells (ILC3s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!