Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graph Neural Networks (GNNs) have gained widespread usage and achieved remarkable success in various real-world applications. Nevertheless, recent studies reveal the vulnerability of GNNs to graph adversarial attacks that fool them by modifying graph structure. This vulnerability undermines the robustness of GNNs and poses significant security and privacy risks across various applications. Hence, it is crucial to develop robust GNN models that can effectively defend against such attacks. One simple approach is to remodel the graph. However, most existing methods cannot fully preserve the similarity relationship among the original nodes while learning the node representation required for reweighting the edges. Furthermore, they lack supervision information regarding adversarial perturbations, hampering their ability to recognize adversarial edges. To address these limitations, we propose a novel Dual Robust Graph Neural Network (DualRGNN) against graph adversarial attacks. DualRGNN first incorporates a node-similarity-preserving graph refining (SPGR) module to prune and refine the graph based on the learned node representations, which contain the original nodes' similarity relationships, weakening the poisoning of graph adversarial attacks on graph data. DualRGNN then employs an adversarial-supervised graph attention (ASGAT) network to enhance the model's capability in identifying adversarial edges by treating these edges as supervised signals. Through extensive experiments conducted on four benchmark datasets, DualRGNN has demonstrated remarkable robustness against various graph adversarial attacks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!