Finding the right balance: The enduring role of florigens during cereal inflorescence development and their influence on fertility.

Curr Opin Plant Biol

School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia. Electronic address:

Published: June 2024

Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2024.102539DOI Listing

Publication Analysis

Top Keywords

inflorescence development
16
enduring role
8
role florigens
8
flowering genes
8
flowering
6
florigens
5
finding balance
4
balance enduring
4
florigens cereal
4
inflorescence
4

Similar Publications

In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.

View Article and Find Full Text PDF

Multilateral Use of Dandelion in Folk Medicine of Central-Eastern Europe.

Plants (Basel)

December 2024

Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Kraków, Poland.

Background: Dandelion ( sect. , also referred to as F.H.

View Article and Find Full Text PDF

is a complex species incorporating a great variety of vegetable types, including cabbage, cauliflower, broccoli, kale, and others. Southern Italy, and especially the Puglia region, is rich in landraces. In this study, genotyping-by-sequencing (GBS) was applied to a germplasm panel of 82 samples, mostly landraces and some commercial varieties, belonging to various morphotypes of .

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Comparative analysis of the gene family in the whole-genome of five gramineous plants.

Front Plant Sci

December 2024

Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.

The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!