There is little knowledge about microplastic (MP) pollution in plastic recycling facility (PRF) wastewater. In this study, MPs in the wastewaters of four PRFs located in Türkiye were characterized for size, shape, color, and polymer types after sieving from 5,000 µm to the lowest 75 µm with seven sieves. The wet peroxide oxidation procedure was applied before attenuated total reflectance fourier transform infrared spectroscopy analysis for polymer identification. Polyethylene, and polypropylene were the dominant (75 % of total count) MP types within 22 polymer types. Average hit qualities of polymers increased from 69 % to above 84 % for the device software (OPUS) and open software (OpenSpecy). The abundance of MPs was determined as 53,987 MPs/L and 0.8 g MP/L for mixed PRFs 7,582 MPs/L and 4.6 g/L for the LDPE recycling facility, and 2,196 MPs/L and 0.06 g MPs/L for the granulation cooling water by count and weight, respectively. Small-sized MPs are found in the bottom sample much more than the surface and effluent samples in the washing tank. This indicated that MPs adsorbed the pollutants settled in the washing tank due to adsorbed pollution/biofilm. A maximum of 4.6 kg MP/ton of plastic recycled can be discharged as MPs that can be recovered. Considering the plastics recycling capacity, discharged MPs in these PRFs are possibly above 30,000 tons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.04.005 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
An elastocaloric thermal battery based on generative learning-designed phase-change alloys is developed to facilitate the efficient recycling of low-temperature waste heat. This battery stores thermal energy as latent heat in a phase-change alloy and releases it on demand through applied stress at ambient temperature. Alloy compositions and corresponding processing parameters, tailored to desired transformation characteristics, are efficiently discovered through a generative learning-enabled inverse design framework, which converts the hand-drawn target heat flow curve into tangible compositional and processing designs.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Environmental Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.
Huan Jing Ke Xue
January 2025
College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
The complex composition of real plastic wastes poses a significant challenge for their large-scale disposal. A responsive on-site compositional analysis of plastics is informative in choosing downstream processing methods. Nanocatalyst-based assay kit is highly qualified for this scene; however, there remain no efficient nanocatalysts for plastics due to their highly inert chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!