Plastic waste management in recycling facilities: Intentionally generated MPs as an emerging contaminant.

Waste Manag

Erciyes University, Engineering Faculty, Environmental Engineering Department, 38030 Kayseri, Turkey. Electronic address:

Published: May 2024

There is little knowledge about microplastic (MP) pollution in plastic recycling facility (PRF) wastewater. In this study, MPs in the wastewaters of four PRFs located in Türkiye were characterized for size, shape, color, and polymer types after sieving from 5,000 µm to the lowest 75 µm with seven sieves. The wet peroxide oxidation procedure was applied before attenuated total reflectance fourier transform infrared spectroscopy analysis for polymer identification. Polyethylene, and polypropylene were the dominant (75 % of total count) MP types within 22 polymer types. Average hit qualities of polymers increased from 69 % to above 84 % for the device software (OPUS) and open software (OpenSpecy). The abundance of MPs was determined as 53,987 MPs/L and 0.8 g MP/L for mixed PRFs 7,582 MPs/L and 4.6 g/L for the LDPE recycling facility, and 2,196 MPs/L and 0.06 g MPs/L for the granulation cooling water by count and weight, respectively. Small-sized MPs are found in the bottom sample much more than the surface and effluent samples in the washing tank. This indicated that MPs adsorbed the pollutants settled in the washing tank due to adsorbed pollution/biofilm. A maximum of 4.6 kg MP/ton of plastic recycled can be discharged as MPs that can be recovered. Considering the plastics recycling capacity, discharged MPs in these PRFs are possibly above 30,000 tons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.04.005DOI Listing

Publication Analysis

Top Keywords

recycling facility
8
polymer types
8
washing tank
8
discharged mps
8
mps
7
plastic waste
4
waste management
4
recycling
4
management recycling
4
recycling facilities
4

Similar Publications

An elastocaloric thermal battery based on generative learning-designed phase-change alloys is developed to facilitate the efficient recycling of low-temperature waste heat. This battery stores thermal energy as latent heat in a phase-change alloy and releases it on demand through applied stress at ambient temperature. Alloy compositions and corresponding processing parameters, tailored to desired transformation characteristics, are efficiently discovered through a generative learning-enabled inverse design framework, which converts the hand-drawn target heat flow curve into tangible compositional and processing designs.

View Article and Find Full Text PDF

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF

Microbial volatile organic compounds measured in the air of a waste sorting plant and a university by thermal desorption-gas chromatography-tandem mass spectrometry.

Environ Monit Assess

January 2025

Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.

Article Synopsis
  • In recyclable waste management facilities, bioaerosols and microorganisms may be released, posing health risks, with a focus on microbial volatile organic compounds (mVOCs) as potential mold exposure biomarkers.
  • A study compared mVOC concentrations between a recyclable waste sorting plant (WSP) and a university campus (UC), finding 13 mVOCs at WSP versus only 3 at UC, emphasizing the higher levels of contamination at WSP.
  • The research optimized mVOC sampling methods, revealing distinct profiles of mVOCs in contaminated versus non-contaminated environments and identifying specific mVOCs that serve well as biomarkers for mold exposure.
View Article and Find Full Text PDF

The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.

View Article and Find Full Text PDF

Hydroxyl Spillover in Fe-Se Dual-Site Catalysts for Mixed Plastics Assay.

J Am Chem Soc

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

The complex composition of real plastic wastes poses a significant challenge for their large-scale disposal. A responsive on-site compositional analysis of plastics is informative in choosing downstream processing methods. Nanocatalyst-based assay kit is highly qualified for this scene; however, there remain no efficient nanocatalysts for plastics due to their highly inert chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!