Constant development of soft robots, stretchable electronics, or flexible medical devices forces the research to look for new flexible structures that can change their shapes under external physical stimuli. This study presents a soft robotic structure that can change its shape into different three-dimensional (3D) configurations in response to electric current flown through the embedded liquid-metal conductors enabling electromagnetic actuation. The proposed structure is composed of volumetric pixels (voxels) connected in series where each can be independently controlled by the inputs of electrical current and vacuum pressure. A single voxel is made up of a granular core (GC) with an outer shell made of silicone rubber. The shell has embedded channels filled with liquid metal. The structure changes its shape under the Lorentz force produced by the liquid metal channel under applied electrical current. The GC allows the structure to maintain its shape after deformation even when the current is shut off. This is possible due to the granular jamming effect. In this study, we show the concept, the results of multiphysics simulation, and experimental characterization, including among other techniques, such as 3D digital image correlation or 3D magnetic field scanning, to study the different properties of the structure. We prove that the proposed structure can morph into many different shapes with the amplitude higher than 10 mm, and this process can be both fully reversible and repeatable.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2023.0144DOI Listing

Publication Analysis

Top Keywords

liquid metal
12
soft robotic
8
robotic structure
8
proposed structure
8
electrical current
8
structure
7
programmable shape-shifting
4
shape-shifting soft
4
structure liquid
4
metal electromagnetic
4

Similar Publications

The scarcity of approaches to assembling copper nanoclusters (Cu NCs) has restricted advancements in Cu NCs research, largely due to stability challenges of the individual NCs. By utilizing the structural adaptability of Cu NCs, we systematically investigate how variations in organic linkers and solvents affect the cluster node size, shape, and their assembling dimensionality. Here, we introduce a facile, one-pot synthesis method for obtaining a range of crystalline Cu cluster-assembled materials (CAMs) through a liquid-liquid interfacial crystallization technique.

View Article and Find Full Text PDF

Thermal Gradient-Driven Heterogeneous Actuation of Liquid Crystal Elastomers for a Crawling Robot.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.

Emerging soft robots based on liquid crystal elastomers (LCEs) exhibit remarkable capabilities for large reversible shape morphing, enabling them to adapt to complex environments and perform diverse tasks such as locomotion and camouflage. Despite extensive studies, current methods for locally controlled actuation of LCE-based soft robots often involve intricate structural design, complex programming of LCEs, incorporation of multiple materials, or complex actuation methods. Here, we present a simple and efficient approach to achieve multiple deformation modes within a simply programmed LCE structure by harnessing Joule heating-induced thermal gradients across the LCE volume.

View Article and Find Full Text PDF

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

A novel ionic liquid MALDI matrix, 3-aminoquinoline/2',4',6'-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!