Flexible foam-based sensors have attracted substantial interest due to their high specific surface area, light weight, superior deformability, and ease of manufacture. However, it is still a challenge to integrate multimodal stimuli-responsiveness, high sensitivity, reliable stability, and good biocompatibility into a single foam sensor. To achieve this, a magnetoresistive foam sensor was fabricated by an in situ freezing-polymerization strategy based on the interpenetrating networks of sodium alginate, poly(vinyl alcohol) in conjunction with glycerol, and physical reinforcement of core-shell bidisperse magnetic particles. The assembled sensor exhibited preferable magnetic/strain-sensing capability (GF ≈ 0.41 T for magnetic field, 4.305 for tension, -0.735 for bending, and -1.345 for pressing), quick response time, and reliable durability up to 6000 cycles under external stimuli. Importantly, a machine learning algorithm was developed to identify the encryption information, enabling high recognition accuracies of 99.22% and 99.34%. Moreover, they could be employed as health systems to detect human physiological motion and integrated as smart sensor arrays to perceive external pressure/magnetic field distributions. This work provides a simple and ecofriendly strategy to fabricate biocompatible foam-based multimodal sensors with potential applications in next-generation soft electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01929 | DOI Listing |
Sci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.
Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!