Metabolic reprogramming has been defined as a hallmark of malignancies. Prior studies have focused on the single nucleotide polymorphism (SNP) of POLG2 gene, which is reportedly responsible for encoding mitochondrial DNA genes and is implicated in the material and energy metabolism of tumor cells, whereas its function in prostate cancer has been elusive. Gene expression profile matrix and clinical information were downloaded from TCGA (The Cancer Genome Atlas) data portal, and GSE3325 and GSE8511 were retrieved from GEO (Gene Expression Omnibus) database. We conducted analysis of the relative expression of POLG2, clinical characterization, survival analysis, GO / KEGG and GSEA (Gene Set Enrichment Analysis) enrichment analysis in R and employed STRING portal to acquaint ourselves with the protein-protein interaction (PPI). IHC (Immunohistochemical) profiles of POLG2 protein between normal and cancerous tissues were consulted via HPA (Human protein atlas) database and the immunohistochemical POLG2 were verified between para-cancerous and cancerous tissues in tissue array. At the cellular level, Mitochondrial dysfunction assay, DNA synthesis test, wound healing assay, and invasion assay were implemented to further validate the phenotype of POLG2 knockdown in PCa cell lines. RT-qPCR and western blotting were routinely adopted to verify variations of molecular expression within epithelial mesenchymal transition (EMT). Results showed that POLG2 was over-expressed in most cancer types, and the over-expression of POLG2 was correlated with PCa progression and suggested poor OS (Overall Survival) and PFI (Progress Free Interval). Multivariate analysis showed that POLG2 might be an independent prognostic factor of prostate cancer. We also performed GO/KEGG, GSEA analysis, co-expression genes, and PPI, and observed the metabolism-related gene alterations in PCa. Furthermore, we verified that POLG2 knockdown had an inhibitory effect on mitochondrial function, proliferation, cell motility, and invasion, we affirmed POLG2 could affect the prognosis of advanced prostate cancer via EMT. In summary, our findings indicate that over-expressed POLG2 renders poor prognosis in advanced prostate cancer. This disadvantageous factor can serve as a potential indicator, making it possible to target mitochondrial metabolism to treat advanced prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006138 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290753 | PLOS |
World J Urol
January 2025
Department of Urology, Urooncology, Robot-assisted and Focal Therapy, University Hospital Magdeburg, Otto-von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
Background And Objectives: Radical prostatectomy is a standard treatment for prostate cancer, yet about 30% of patients experience rising biochemical markers within a decade post-surgery. Pelvic lymph node sampling during prostatectomy assesses potential lymph node metastases, but standard histological assessments, which typically examine only 2-3 tissue sections, often miss occult metastases. This study assesses the effectiveness of qPCR in detecting PSA coding KLK3 mRNA for identifying lymph node metastases post-prostatectomy and explores the correlation between PSA-mRNA and biochemical recurrence.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK.
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, People's Republic of China.
CXCL14 is a highly conserved chemokine expressed in various cell types, playing crucial roles in both physiological and pathological processes, including immune regulation and tumorigenesis. Recently, the role of CXCL14 in tumors has attracted considerable attention. However, previous pan-cancer studies have reported inconsistencies regarding the effects of CXCL14 on tumors, particularly concerning its expression levels in tumor tissues and its influence on various phenotypes of cancer cells.
View Article and Find Full Text PDFAcad Radiol
January 2025
University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network-Sinai Health System -Women's College Hospital, University of Toronto, Toronto, ON, Canada (S.A.M., P.V.H., U.M., A.B.D.). Electronic address:
Rationale And Objectives: Recently, the Response Evaluation Using PSMA PET/CT in Patients with Metastatic Castration-Resistant Prostate Cancer (RECIP 1.0) was proposed to better evaluate treatment response in prostate cancer patients using PET/CT with prostate-specific membrane antigen (PSMA) than more traditional approaches like metabolic PET evaluation response criteria in solid tumor (PERCIST 1.0).
View Article and Find Full Text PDFBrachytherapy
January 2025
Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Background: To determine outcomes of MRI-assisted radiosurgery (MARS) for salvage brachytherapy using the radioisotope Pd after various upfront treatments including surgery, external beam radiotherapy, and brachytherapy.
Methods: We retrospectively reviewed data for patients who underwent salvage MARS for intraprostatic lesions or prostate bed recurrences from 2016 to 2022. Biochemical recurrence, prostate cancer-specific, and overall survival, and the cumulative incidences of toxicities, were determined by Kaplan-Meier estimates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!