Single-component electrocatalysts generally lead to unbalanced adsorption of OH and urea during urea oxidation reaction (UOR), thus obtaining low activity and selectivity especially when oxygen evolution reaction (OER) competes at high potentials (>1.5 V). Herein, a cross-alignment strategy of in situ vertically growing Ni(OH) nanosheets on 2D semiconductor g-CN is reported to form a hetero-structured electrocatalyst. Various spectroscopy measurements including in situ experiments indicate the existence of enhanced internal electric field at the interfaces of vertical Ni(OH) and g-CN nanosheets, favorable for balancing adsorption of reaction intermediates. This heterojunction electrocatalyst shows high-selectivity UOR compared to pure Ni(OH), even at high potentials (>1.5 V) and large current density. The computational results show the vertical heterojunction could steer the internal electric field to increase the adsorption of urea, thus efficiently avoiding poisoning of strongly adsorbed OH on active sites. A membrane electrode assembly (MEA)-based electrolyzer with the heterojunction anode could operate at an industrial-level current density of 200 mA cm. This work paves an avenue for designing high-performance electrocatalysts by vertical cross-alignments of active components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202401053 | DOI Listing |
JMIR Perioper Med
January 2025
Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States.
Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, MALAYSIA.
The finger photoplethysmography fitness index (PPGF), a marker of peripheral vascular function, has been linked to heart rate (HR) variability. However, the influence of acute HR changes on resting PPGF, a purported indicator of local blood flow, remains unclear. This study aimed to determine the influence of acute HR changes on resting PPGF.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Internal Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway.
Background: Accurate assessment of fluid volume and hydration status is essential in many disease states, including patients with chronic kidney disease. The aim of this study was to investigate the ability of a wearable continuous bioimpedance sensor to detect changes in fluid volume in patients undergoing regular hemodialysis (HD).
Methods: 31 patients with end-stage renal disease were enrolled and monitored with a sensor patch (Re:Balans) on the upper back through two consecutive HD sessions and the interdialytic period between.
Nature
January 2025
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!