Objective: Chemical, biological, radiological, and nuclear (CBRN) incidents are a major challenge for emergency medical services and the involved hospitals, especially if decontamination needs to be performed nearby or even within the hospital campus. The University Hospital Wuerzburg has developed a comprehensive and alternative CBRN response plan. The focus of this study was to proof the practicability of the concept, the duration of the decontamination process, and the temperature management.
Methods: The entire decontamination area can be deployed 24/7 by the hospitals technical staff. Fire and rescue services are responsible for the decontamination process itself. This study was designed as full-scale exercise with 30 participants.
Results: The decontamination area was ready for operation within 30 minutes. The decontamination of the four simulated patients took 5.5 ± 0.6 minutes (mean ± SD). At the end of the decontamination process, the temperature of the undressed upper body of the training patients was 27.25 ± 1°C (81.05 ± 2°F) (mean ± SD) and the water in the shower was about 35°C (95°F).
Conclusion: The presented concept is comprehensive and simple for a best possible care during CBRN incidents at hospitals. It ensures wet decontamination by Special Forces, while the technical requirements are created by the hospital.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5055/ajdm.0471 | DOI Listing |
J Environ Manage
January 2025
Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India. Electronic address:
Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235 13565-905, São Carlos, SP, Brazil.
The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).
View Article and Find Full Text PDFThis study addresses the global issue of foodborne illness, specifically focusing on those resulting from the consumption of leafy green vegetables. It explores the rising trend of consuming minimally processed or raw foods and the imperative of maintaining safety standards starting at the preharvest stage to prevent pathogenic bacterial contamination. The study identifies soil and irrigation water as key sources of pathogens and emphasizes the need for strict preventive measures during production and preharvest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!