Electron pairs have an illustrious history in chemistry, from powerful concepts to understanding structural stability and reactive changes to the promise of serving as building blocks of quantitative descriptions of the electronic structure of complex molecules and materials. However, traditionally, two-electron wavefunctions (geminals) have not enjoyed the popularity and widespread use of the more standard single-particle methods. This has changed recently, with a renewed interest in the development of geminal wavefunctions as an alternative to describing strongly correlated phenomena. Hence, there is a need to find geminal methods that are accurate, computationally tractable, and do not demand significant input from the user (particularly via cumbersome and often ill-behaved orbital optimization steps). Here, we propose new families of geminal wavefunctions inspired by the pair coupled cluster doubles ansatz. We present a new hierarchy of two-electron wavefunctions that extends the one-reference orbital idea to other geminals. Moreover, we show how to incorporate single-like excitations in this framework without leaving the quasiparticle picture. We explore the role of imposing seniority restrictions on these wavefunctions and benchmark these new methods on model strongly correlated systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0202035 | DOI Listing |
We consider wavefunctions built from antisymmetrized products of two-electron wavefunctions (geminals), which is arguably the simplest extension of the antisymmetrized product of one-electron wavefunctions (orbitals) (i.e., a Slater determinant).
View Article and Find Full Text PDFJ Chem Phys
April 2024
Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA.
Electron pairs have an illustrious history in chemistry, from powerful concepts to understanding structural stability and reactive changes to the promise of serving as building blocks of quantitative descriptions of the electronic structure of complex molecules and materials. However, traditionally, two-electron wavefunctions (geminals) have not enjoyed the popularity and widespread use of the more standard single-particle methods. This has changed recently, with a renewed interest in the development of geminal wavefunctions as an alternative to describing strongly correlated phenomena.
View Article and Find Full Text PDFRSC Adv
September 2023
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń Grudziadzka 5 87-100 Toruń Poland
We employ state-of-the-art quantum chemistry methods to study the structure-to-property relationship in polyanilines (PANIs) of different lengths and oxidation states. Specifically, we focus on leucoemeraldine, emeraldine, and pernigraniline in their tetramer and octamer forms. We scrutinize their structural properties, HOMO and LUMO energies, HOMO-LUMO gaps, and vibrational and electronic spectroscopy using various Density Functional Approximations (DFAs).
View Article and Find Full Text PDFJ Chem Phys
December 2022
Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada.
Seniority-zero geminal wavefunctions are known to capture bond-breaking correlation. Among this class of wavefunctions, Richardson-Gaudin states stand out as they are eigenvectors of a model Hamiltonian. This provides a clear physical picture, clean expressions for reduced density matrix (RDM) elements, and systematic improvement (with a complete set of eigenvectors).
View Article and Find Full Text PDFJ Chem Phys
June 2022
Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada.
Scalar products and density matrix elements of closed-shell pair geminal wavefunctions are evaluated directly in terms of the pair amplitudes, resulting in an analog of Wick's theorem for fermions or bosons. This expression is, in general, intractable, but it is shown how it becomes feasible in three distinct ways for Richardson-Gaudin (RG) states, the antisymmetrized geminal power, and the antisymmetrized product of strongly orthogonal geminals. Dissociation curves for hydrogen chains are computed with off-shell RG states and the antisymmetrized product of interacting geminals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!