Introduction: Artificial intelligence or machine learning (AI/ML) based systems can help personalize prescribing decisions for individual patients. The recommendations of these clinical decision support systems must relate to the "label" of the medicines involved. The label of a medicine is an approved guide that indicates how to prescribe the drug in a safe and effective manner.

Areas Covered: The label for a medicine may evolve as new information on drug safety and effectiveness emerges, leading to the addition or removal of warnings, drug-drug interactions, or to permit new indications. However, the speed at which these updates are made to these AI/ML recommendation systems may be delayed and could influence the safety of prescribing decisions. This article explores the need to keep AI/ML tools 'in sync' with any label changes. Additionally, challenges relating to medicine availability and geographical suitability are discussed.

Expert Opinion: These considerations highlight the important role that pharmacoepidemiologists and drug safety professionals must play within the monitoring and use of these tools. Furthermore, these issues highlight the guiding role that regulators need to have in planning and oversight of these tools.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14740338.2024.2338252DOI Listing

Publication Analysis

Top Keywords

recommendation systems
8
prescribing decisions
8
label medicine
8
drug safety
8
learning evolving
4
medicine
4
evolving medicine
4
label
4
medicine label
4
label artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!