Through controlling the ssDNA product length of rolling circle amplification with AcyNTP, here we develop a nanopore signal enhancement strategy (STSS), which can successfully transfer the short oligonucleotide targets into long ssDNAs with appropriate lengths that can generate significant translocation currents. By labelling the RCA product with tags such as tetrahedral structures and isothermal amplicons, the resolution, signal specificity, and target range of the STSS can be further extended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc00961d | DOI Listing |
BMC Vet Res
December 2024
Department of Research, Research and Development Station for Bovine, Arad, Romania.
Background: There are no studies belong NOTCH2 gene polymorphism in relation to reproductive and productive traits in Holstein cattle. The objective of the present study was to investigate the effect of NOTCH2 gene polymorphisms on productive and reproductive performance of fertile and anestrum cattle.
Methods: The cattle were classified into anestrus for 3-12 months postpartum (n = 115, 37.
Anal Biochem
December 2024
Department of Biochemistry, Kampala International University-Western Campus, Ishaka, Uganda.
Aptamers, single-stranded nucleic acids that bind to specific targets with high affinity and specificity, hold significant promise in various biomedical and biotechnological applications. The traditional method of aptamer selection, SELEX (Systematic Evolution of Ligands by EXponential Enrichment) takes a lot of work and time. Recent advancements in computational methods have revolutionized aptamer design, offering efficient and effective alternatives.
View Article and Find Full Text PDFCryobiology
December 2024
Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China.
Developing a fluorescence sensing platform for point-of-care detection of low abundance biomarkers is highly valuable for early diagnosis of disease. Herein, a biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker was constructed and further applied to visualize and quantify the miRNA-21 in biological samples. The DNAzyme walker was orthogonally activated by the target miRNA-21, which enabled the unlocking of the DNAzyme walker strand and the subsequently repeated substrate cleavage, thus generating enhanced fluorescence signals.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!