Objectives: This study aims to explore the effect of inward rectifier potassium (Kir) 2.1 channel on the osteogenic differentiation of human dental follicle cells (hDFCs) and its mechanism.
Methods: hDFCs were isolated and cultured, and their source was verified by flow cytometry. Osteogenic differentiation ability of hDFCs was evaluated by osteogenic induction. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect the gene expression of Kir2.1 gene (KCNJ2) in hDFCs. Real-time quantitative PCR (RT-qPCR) was performed to detect the expression of the Kir2.1 gene (KCNJ2) in hDFCs before and after osteogenic induction. Patch clamp technique was conducted to record the membrane potential changes of hDFCs before and after osteogenic induction. Moreover, the effect on the osteogenic differentiation of hDFCs was confirmed by increasing the concentration of extracellular potassium ions (50 mmol·L). Kir2.1 channel blockers cesium chloride (CsCl) and C19H20CINO (ML133) were applied to determine the effect of the Kir2.1 potassium channel on the osteogenic differentiation of hDFCs. At the same time, RT-qPCR was used to observe the expression changes of osteogenic differentiation related genes Runx related transcription factor 2 (Runx2) and osteocalcin (OCN) before and after the two intervention measures. Calcium imaging was performed to observe the effect of membrane potential hyperpolarization caused by decreased extracellular potassium level (2 mmol·L) on intracellular calcium concentration.
Results: RT-PCR results showed that hDFCs expressed the Kir2.1 channel gene (KCNJ2). The RT-qPCR results showed that the KCNJ2 gene expression in hDFCs was upregulated 7 days after osteogenic induction. The patch clamp results showed that the membrane potential of hDFCs hyperpolarized to (-47±5.2) mV from (-12±3.2) mV. Alizarin red and alkaline phosphatase staining results showed that increasing the concentration of the extracellular potassium or blocking the function of the Kir2.1 channel significantly inhibited the osteogenic mineralization ability of hDFCs. The membrane potential hyperpolarization increased the intracellular calcium concentration in hDFCs.
Conclusions: Membrane potential hyperpolarization mediated by the Kir2.1 channel plays an important role in the osteogenic differentiation of hDFCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002191 | PMC |
http://dx.doi.org/10.7518/hxkq.2022.02.003 | DOI Listing |
Biomater Res
January 2025
Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China.
Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan 430000, China. Electronic address:
Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway.
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg-doped nHA (N-HA) and a more amorphous, rounded Mg- and CO-doped nHA (R-HA).
View Article and Find Full Text PDFJ Mol Histol
January 2025
School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.
Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.
View Article and Find Full Text PDFDevelopment
January 2025
Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!