Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17343DOI Listing

Publication Analysis

Top Keywords

peripheral refugia
20
elevation species
16
population sizes
12
species
10
refugia
9
glacial refugia
8
plant species
8
altitudinal segregation
8
ice-free peaks
8
nunatak refugia
8

Similar Publications

Background And Aims: In Central Europe, the drought-tolerant downy oak (Quercus pubescens) is at the northern edge of its natural distribution range, often growing in small and spatially isolated populations. Here, we elucidate how the population genetic structure of Central European Q. pubescens was shaped by geographic barriers, genetic drift and introgression with the closely related sessile oak (Q.

View Article and Find Full Text PDF

Glacial history of (Saxifragaceae) in the context of refugial areas in the Western Carpathians.

PhytoKeys

September 2024

W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland W. Szafer Institute of Botany, Polish Academy of Sciences Kraków Poland.

Article Synopsis
  • Local-scale studies on narrow endemic species in mountain phylogeography are limited, yet understanding their genetic structure is crucial for grasping local flora diversity and history.
  • The research focuses on a distinctive endemic species in the Western Carpathians by analyzing populations across its distribution range using non-coding cpDNA and nuclear ribosomal DNA sequencing, along with AFLP fingerprinting.
  • Findings reveal two distinct genetic groups based on cpDNA, indicating historical population isolation during the last glacial period, with several local refugia identified in the Tatra Mountains and surrounding massifs.
View Article and Find Full Text PDF

Genome-wide technologies open up new possibilities to clarify questions on genetic structure and phylogeographic history of taxa previously studied with microsatellite loci and mitochondrial sequences. Here, we used 736 individual red deer (Cervus elaphus) samples genotyped at 35,701 single nucleotide polymorphism loci (SNPs) to assess the population structure of the species throughout Europe. The results identified 28 populations, with higher degrees of genetic distinction in peripheral compared to mainland populations.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a study on genomic diversity in the great tit (Parus major), focusing on how environmental factors and demographic history impact genetic variation across different populations in Europe.
  • The research, which is one of the most extensive genomic surveys for a wild vertebrate, involved analyzing about 500,000 SNP markers from 647 individuals across 29 populations to understand patterns of genomic divergence.
  • Findings revealed that genetic differentiation varied significantly among populations, influenced by factors like local recombination rates and natural selection, with reduced diversity noted in island populations and evidence of recent adaptive changes at the edges of the species' range.
View Article and Find Full Text PDF

Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!