The strong metal-support interaction (SMSI) is a phenomenon observed in supported metal catalyst systems in which reducible metal oxide supports can form overlayers over the surface of active metal nanoparticles (NPs) under a hydrogen (H) environment at elevated temperatures. SMSI has been shown to affect catalyst performance in many reactions by changing the type and number of active sites on the catalyst surface. Laboratory methods for the analysis of SMSI at the nanoparticle-ensemble level are lacking and mostly based on indirect evidence, such as gas chemisorption. Here, we demonstrate the possibility to detect and characterize SMSIs in Co/TiO model catalysts using the laboratory X-ray standing wave (XSW) technique for a large ensemble of NPs at the bulk scale. We designed a thermally stable MoN/SiN periodic multilayer to retain XSW generation after reduction with H gas at 600°C. The model catalyst system was synthesized here by deposition of a thin TiO layer on top of the periodic multilayer, followed by Co NP deposition via spare ablation. A partial encapsulation of Co NPs by TiO was identified by analyzing the change in Ti atomic distribution. This novel methodological approach can be extended to observe surface restructuring of model catalysts at high temperature (up to 1000°C) and pressure (≤3 mbar), and can also be relevant for fundamental studies in the thermal stability of membranes, as well as metallurgy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001393PMC
http://dx.doi.org/10.1107/S1600576724001730DOI Listing

Publication Analysis

Top Keywords

model catalysts
12
x-ray standing
8
standing wave
8
strong metal-support
8
metal-support interaction
8
co/tio model
8
periodic multilayer
8
wave characterization
4
characterization strong
4
interaction co/tio
4

Similar Publications

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

A new methodology based on the Hamieh thermal model was applied for the determination of the surface properties of solid surfaces. The new approach consisted of the accurate quantification of the London dispersive surface energy of materials using the two-dimensional inverse gas chromatography technique at infinite dilution. This technique used the notion of the net retention volume of adsorbed molecules on the solid catalysts, allowing the determination of the free energy of adsorption.

View Article and Find Full Text PDF

Artificial intelligence and assisted reproductive technology: A comprehensive systematic review.

Taiwan J Obstet Gynecol

January 2025

Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:

The objective of this review is to evaluate the contributions of Artificial Intelligence (AI) to Assisted Reproductive Technologies (ART), focusing on its role in enhancing the processes and outcomes of fertility treatments. This study analyzed 48 relevant articles to assess the impact of AI on various aspects of ART, including treatment efficacy, process optimization, and outcome prediction. The effectiveness of different machine learning paradigms-supervised, unsupervised, and reinforcement learning-in improving ART-related procedures was particularly examined.

View Article and Find Full Text PDF

Novel 3-sulfonamide pyrrol-2-one derivatives containing two sulfonamide groups were synthesized via a one-pot, three-component method using trifluoroacetic acid as a catalyst. Structural confirmation was achieved using spectroscopic techniques. The compounds were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX, and hCA XII).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!