Hendrickson & Lattman [ (1970), B, 136-143] introduced a method for representing crystallographic phase probabilities defined on the unit circle. Their approach could model the bimodal phase probability distributions that can result from experimental phase determination procedures. It also provided simple and highly effective means to combine independent sources of phase information. The present work discusses the equivalence of the Hendrickson-Lattman distribution and the generalized von Mises distribution of order two, which has been studied in the statistical literature. Recognizing this connection allows the Hendrickson-Lattman distribution to be expressed in an alternative form which is easier to interpret, as it involves the location and concentration parameters of the component von Mises distributions. It also allows clarification of the conditions for bimodality and access to a simplified analytical method for evaluating the trigonometric moments of the distribution, the first of which is required for computing the best Fourier synthesis in the presence of phase, but not amplitude, uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001409PMC
http://dx.doi.org/10.1107/S1600576724000311DOI Listing

Publication Analysis

Top Keywords

von mises
12
phase probability
8
generalized von
8
mises distribution
8
hendrickson-lattman distribution
8
phase
6
distribution
6
note hendrickson-lattman
4
hendrickson-lattman phase
4
probability distribution
4

Similar Publications

Efficacy of SAVE: A Novel Maxillary Protraction Device-A Finite Element Analysis.

Int J Clin Pediatr Dent

December 2024

Department of Orthodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India.

Introduction: This study describes a novel device known as "SAVE" to effectively protract the deficient maxilla in class III malocclusion by quantifying and evaluating the changes in the maxilla through a finite element analysis (FEA).

Materials And Methods: The patented novel SAVE device was three-dimensionally modeled using Autodesk Fusion 360. An existing computed tomography (CT) scan of a patient exhibiting class III malocclusion was used to generate a finite element (FE) model.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

: This study aimed to compare the effects of surgically assisted rapid palatal expansion (SARPE) techniques and their combinations on the stresses (von Mises, maximum principal, and minimum principal) and displacements that occur in the maxilla, facial bones, and maxillary teeth using three-dimensional finite element analysis (FEA). : SARPE was simulated using seven different osteotomy techniques. The FEA models were simulated with a combination of various osteotomies, including midpalatal and lateral osteotomies, lateral osteotomy with a step, and separation of the pterygomaxillary junction.

View Article and Find Full Text PDF

A comparative analysis has been carried out between three different dental materials suitable for the prostheses manufacturing. The analysis performed is based on the finite elements method (FEM) and was made to evaluate their performance under three different loading conditions. Three different materials were modeled with 3D CAD geometry, all of them suitable to be simulated by means of a linear elastic model.

View Article and Find Full Text PDF

Background: Examining stress distributions in abutment teeth with periapical lesions is essential for understanding their biomechanical impact on dental structures and tissues. This study uses finite element analysis (FEA) to evaluate these stress patterns under occlusal forces, aiming to enhance treatment strategies and prosthetic designs.

Methods: Three FEA models were created: a healthy mandibular premolar (Model 1), a premolar with a single crown and a lesion repaired using a fiber-post (Model 2), and 3) a premolar with a lesion repaired using fiber-post to support a four-member bridge (Model 3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!