Quantity, distribution and phenotype of newly generated cells in the intact spinal cord of adult macaque monkeys.

Heliyon

Department of Anatomy and Cell Biology, Faculty of Medicine, Marin Drinov str. 55, Medical University, Varna, Bulgaria.

Published: April 2024

The existence of proliferating cells in the intact spinal cord, their distribution and phenotype, are well studied in rodents. A limited number of studies also address the proliferation after spinal cord injury, in non-human primates. However, a detailed description of the quantity, distribution and phenotype of proliferating cells at different anatomical levels of the intact adult non-human primate spinal cord is lacking at present. In the present study, we analyzed normal spinal cord tissues from adult macaque monkeys (Macaca fuscata), infused with Bromo-2'-deoxyuridine (BrdU), and euthanized at 2h, 2 weeks, 5 weeks and 10 weeks after BrdU. We found a significantly higher density of BrdU + cells in the gray matter of cervical segments as compared to thoracic or lumbar segments, and a significantly higher density of proliferating cells in the posterior as compared to the anterior horn of the gray matter. BrdU + cells exhibited phenotype of microglia or endothelial cells (∼50%) or astroglial and oligodendroglial cells (∼40%), including glial progenitor phenotypes marked by the transcription factors Sox9 and Sox10. BrdU + cells also co-expressed other transcription factors known for their involvement in embryonic development, including Emx2, Sox1, Sox2, Ngn1, Olig1, Olig2, Olig3. In the central canal, BrdU + cells were located along the dorso-ventral axis and co-labeled for the markers Vimentin and Nestin. These results reveal the extent of cellular plasticity in the spinal cord of non-human primates under normal conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002253PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28856DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
distribution phenotype
12
proliferating cells
12
quantity distribution
8
cells intact
8
intact spinal
8
adult macaque
8
macaque monkeys
8
non-human primates
8
weeks weeks
8

Similar Publications

The application of the technique for dorsal median sulcus mapping in intramedullary space occupying surgery: a single-center experience.

Acta Neurochir (Wien)

January 2025

Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.

Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.

View Article and Find Full Text PDF

Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye.

Curr Top Dev Biol

January 2025

Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:

All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.

View Article and Find Full Text PDF

Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!