is a pathogenic microorganism linked to a variety of severe health conditions including ovarian cancer, prostate cancer, HIV transmission, and sexually transmitted diseases. A more effective approach to address the challenges posed by this pathogen, given its high antibiotic resistance rates, could be the development of a peptide vaccine. In this study, we used experimentally validated 13 membrane proteins and their immunogenicity to identify suitable vaccine candidates. Thus, based on immunogenic properties and high conservation among other sub-strains, the P110 surface protein is considered for further investigation. Later on, we identified T-cell epitopes and B-cell epitopes from the P110 protein to construct a multiepitope-based vaccine. As a result, the 'NIAPISFSFTPFTAA' T-cell epitope and 'KVKYESSGSNNISFDS' B-cell epitope have shown 99.53% and 87.50% population coverage along with 100% conservancy among the subspecies, and both epitopes were found to be non-allergenic. Furthermore, focusing on molecular docking analysis showed the lowest binding energy for MHC-I (-137.5 kcal/mol) and MHC-II (-183.3 kcal/mol), leading to a satisfactory binding strength between the T-cell epitopes and the MHC molecules. However, the constructed multiepitope vaccine (MEV) consisting of 54 amino acids demonstrates favorable characteristics for a vaccine candidate, including a theoretical pI of 4.25 with a scaled solubility of 0.812 and high antigenicity probabilities. Additionally, structural analyses reveal that the MEV displays substantial alpha helices and extended strands, vital for its immunogenicity. Molecular docking with the human Toll-like receptors TLR1/2 heterodimer shows strong binding affinity, reinforcing its potential to elicit an immune response. Our immune simulation analysis demonstrates immune memory development and robust immunity, while codon adaptation suggests optimal expression in using the pET-28a(+) vector. These findings collectively highlight the MEV's potential as a valuable vaccine candidate against

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002066PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28223DOI Listing

Publication Analysis

Top Keywords

peptide vaccine
8
t-cell epitopes
8
molecular docking
8
vaccine candidate
8
vaccine
7
epitopes
5
computational approach
4
approach identifying
4
identifying immunogenic
4
immunogenic epitopes
4

Similar Publications

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

This experiment aimed to compare the efficacy of an antimicrobial peptide (AMP) with a conventional antibiotic growth promoter (AGP) during necrotic enteritis (NE) challenge in broilers. In total, 720 1-day-old exclusively male broiler chicks (Ross-308) were allocated to five treatments, each with six replicates of 24 birds (n = 144/treatment), for 35 days. The treatments were as follows: (1) uninfected control (UC) with basal diet, (2) infected control (IC) with C.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!