AI Article Synopsis

  • * Significant fluctuations in the consumption of these sugars were observed as early as the 50th generation, which were not solely due to the emergence of low-consumption clones but instead linked to variations in the number of gene copies responsible for sugar assimilation.
  • * The findings suggest that while the yeast shows some genetic and metabolic instability, these issues could potentially worsen in more extreme industrial conditions, negatively impacting production efficiency.

Article Abstract

The genetic stability and metabolic robustness of production strains is one of the key criteria for the production of bio-based products by microbial fermentation on an industrial scale. These criteria were here explored in an industrial ethanol-producer strain of able to co-ferment D-xylose and L-arabinose with glucose through the chromosomal integration of several copies of pivotal genes for the use of these pentose (C5) sugars. Using batch sequential cultures in a controlled bioreactor that mimics long-term fermentation in an industrial setting, this strain was found to exhibit significant fluctuations in D-xylose and L-arabinose consumption as early as the 50th generation and beyond. These fluctuations seem not related to the few low-consumption C5 sugar clones that appeared throughout the sequential batch cultures at a frequency lower than 1.5% and that were due to the reduction in the number of copies of transgenes coding for C5 sugar assimilation enzymes. Also, subpopulations enriched with low or high expression, whose expression level was reported to be proportional to homologous recombination rate did not exhibit defect in C5-sugar assimilation, arguing that other mechanisms may be responsible for copy number variation of transgenes. Overall, this work highlighted the existence of genetic and metabolic instabilities in an industrial yeast which, although modest in our conditions, could be more deleterious in harsher industrial conditions, leading to reduced production performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002265PMC
http://dx.doi.org/10.3389/fbioe.2024.1357671DOI Listing

Publication Analysis

Top Keywords

fermentation industrial
12
long-term fermentation
8
d-xylose l-arabinose
8
industrial
6
genomic metabolic
4
metabolic instability
4
instability long-term
4
industrial strain
4
strain engineered
4
engineered sugar
4

Similar Publications

Protein Engineering of Substrate Specificity toward Nitrilases: Strategies and Challenges.

J Agric Food Chem

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.

Nitrilase is extensively applied across diverse sectors owing to its unique catalytic properties. Nevertheless, in industrial production, nitrilases often face issues such as low catalytic efficiency, limited substrate range, suboptimal selectivity, and side reaction products, which have garnered heightened attention. With the widespread recognition that the structure of enzymes has a direct impact on their catalytic properties, an increasing number of researchers are beginning to optimize the functional characteristics of nitrilases by modifying their structures, in order to meet specific industrial or biotechnology application needs.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Illegal additives such as oxyphenisatine and its esters are prevalent in the slimming food industry, necessitating a robust analytical method for their detection. This study presents a novel UPLC-MS/MS method for the rapid and accurate quantification of total oxyphenisatine levels in fermented green plum, following hydrolysis of its esters. An efficient ultrasonic extraction with a methanol and 0.

View Article and Find Full Text PDF

Milk and dairy products - a scoping review for Nordic Nutrition Recommendations 2023.

Food Nutr Res

December 2024

Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

Milk and dairy products are major sources of protein, calcium, and other micronutrients. Milk and dairy products contribute with approximately half of the total intake of saturated fat in the Nordic and Baltic diets. Saturated fat is an important determinant of plasma total and low density lipoprotein (LDL)-cholesterol concentrations, and a causal relationship between high LDL-cholesterol and atherosclerotic cardiovascular disease has consistently been documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!