() genes encode a subfamily of receptor-like kinases (RLK) that regulate diverse processes during plant growth, development, and stress responses. The first CrRLK1L was identified from the , commonly known as Madagascar periwinkle. Subsequently, CrRLK1L gene families have been characterized in many plants. The genome of encodes 15 genes with 43 paralogous copies, with three homeologs each, except for D and A, which are absent. Chromosomal localization analysis revealed a markedly uneven distribution of genes across seven different chromosomes, with chromosome 4 housing the highest number of genes, while chromosome 6 lacked any genes. Tissue-specific gene expression analysis revealed distinct expression patterns among the gene family members, with certain members exhibiting increased expression in reproductive tissues. Gene expression analysis in response to various abiotic and biotic stress conditions unveiled differential regulation of gene family members. Cold stress induces CrRLK1Ls and while downregulating and . Drought stress upregulates , contrasting with the downregulation of . and were highly induced in response to 1 hr of heat, and combined drought and heat stress, whereas is downregulated. Similarly, in response to NaCl stress, only homeologs were induced. and inoculation induces homeologs of and . The analysis of -acting elements in the promoter regions identified elements crucial for plant growth and developmental processes. This comprehensive genome-wide analysis and expression study provides valuable insights into the essential functions of CrRLK1L members in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002176PMC
http://dx.doi.org/10.3389/fpls.2024.1345774DOI Listing

Publication Analysis

Top Keywords

expression analysis
12
gene family
12
plant growth
8
analysis revealed
8
gene expression
8
family members
8
expression
6
analysis
6
gene
6
stress
6

Similar Publications

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!