Introduction: Glass-ionomer (GIC) cement was introduced in 1972 as a "new filling material of dentistry". It is bioactive and plays an important role in caries prevention due to its ability to release fluoride into the oral environment and remineralization of dental hard tissues. However, its properties such as moisture sensitivity, wear resistance, and bond strength are not sufficient to inflict the antimicrobial environment. This study aimed to evaluate the antibacterial property of four different GIC cements against S. mutans and L. acidophilus.
Methodology: This study was conducted on 120 disk-shaped samples (30 for antibacterial activity), which were placed in Petri dishes holding Müeller Hinton agar. Bacterial strains were overhauled in the brain heart infusion culture medium, and by utilizing disposable straps on blood agar medium, 100 ml of the strain inoculum was plated out. Through the diffusion method on the solid medium, the antibacterial activity of GIC was determined.
Results: The antibacterial activity was the highest for Riva silver and chemifill rock for 24 and 72 hours, respectively. For 48 hours, Equia forte and chemifill rock had the highest antibacterial activity, and there was a significant difference between the groups.
Conclusion: Ketac™ molar easymix inhibited the growth of S. mutans and L. acidophilus but had the lowest antibacterial effect compared to other GICs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001053 | PMC |
http://dx.doi.org/10.4103/jpbs.jpbs_450_23 | DOI Listing |
BMC Complement Med Ther
January 2025
Department of Faculty of Health Sciences, American University of Madaba, Madaba, Jordan.
Pseudomonas aeruginosa is an opportunistic pathogen belonging to the γ-proteobacteria family, known to cause pneumonia linked with ventilator use and nosocomial infections. With the increasing prevalence of antibiotic-resistant bacteria, there is a pressing need to identify alternatives to conventional antibiotics. Plant-derived substances (PDSs) offer potential not only as antibacterial agents but also as modulators of antibiotic resistance.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.
Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.
Int J Biol Macromol
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!