A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. | LitMetric

Purpose: Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet.

Methods: Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA.

Results: Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring.

Conclusions: Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250925PMC
http://dx.doi.org/10.1249/MSS.0000000000003443DOI Listing

Publication Analysis

Top Keywords

voluntary wheel
16
wheel running
16
cardiometabolic risks
12
risks female
8
female offspring
8
offspring exposed
8
high-fat high-sucrose
8
adult-onset voluntary
8
hfhs diet
8
body weight
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!