https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38594936&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 385949362024041120241116
1464-50335112024FebAnnals of human biologyAnn Hum BiolTotal daily energy expenditure and elevated water turnover in a small-scale semi-nomadic pastoralist society from Northern Kenya.2310724231072410.1080/03014460.2024.2310724Pastoralists live in challenging environments, which may be accompanied by unique activity, energy, and water requirements.Few studies have examined whether the demands of pastoralism contribute to differences in total energy expenditure (TEE) and water turnover (WT) compared to other lifestyles.Accelerometer-derived physical activity, doubly labelled water-derived TEE and WT, and anthropometric data were collected for 34 semi-nomadic Daasanach adults from three northern Kenyan communities with different levels of pastoralist activity. Daasanach TEEs and WTs were compared to those of other small-scale and industrialised populations.When modelled as a function of fat-free-mass, fat-mass, age, and sex, TEE did not differ between Daasanach communities. Daasanach TEE (1564-4172 kcal/day) was not significantly correlated with activity and 91% of TEEs were within the range expected for individuals from comparison populations. Mean WT did not differ between Daasanach communities; Daasanach absolute (7.54 litres/day men; 7.46 litres/day women), mass-adjusted, and TEE-adjusted WT was higher than most populations worldwide.The similar mass-adjusted TEE of Daasanach and industrialised populations supports the hypothesis that habitual TEE is constrained, with physically demanding lifestyles necessitating trade-offs in energy allocation. Elevated WT in the absence of elevated TEE likely reflects a demanding active lifestyle in a hot, arid climate.McGroskyAmandaAEvolutionary Anthropology, Duke University, Durham, NC, USA.SwansonZane SZSEvolutionary Anthropology, Duke University, Durham, NC, USA.Global Food and Water Security Program, Center for Strategic and International Studies, Washington, WA, USA.RimbachRebeccaREvolutionary Anthropology, Duke University, Durham, NC, USA.Department of Behavioural Biology, University of Münster, Münster, Germany.BethancourtHilaryHDepartment of Anthropology, Northwestern University, Evanston, IL, USA.NdiemaEmmanuelEDepartment of Earth Sciences, National Museums of Kenya, Nairobi, Kenya.NzunzaRosemaryRKenya Medical Research Institute, Nairobi, Kenya.BraunDavid RDRCenter for the Advanced Study of Human Paleobiology, Anthropology Department, George Washington University, Washington, WA, USA.Technological Primate Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.RosingerAsher YAYDepartment of Biobehavioral Health, PA State University, University Park, PA, USA.Department of Anthropology, Pennsylvania State University, State College, PA, USA.PontzerHermanHEvolutionary Anthropology, Duke University, Durham, NC, USA.Duke Global Health Institute, Duke University, Durham, NC, USA.engP30 AG034424AGNIA NIH HHSUnited StatesJournal Article20240304
EnglandAnn Hum Biol04040240301-4460059QF0KO0RWaterIMAdultMaleHumansFemaleWaterKenyaEnergy MetabolismExerciseAnthropometryEnergy expendituredoubly labelled waterpastoralismwater turnoverDisclosure statement. No potential conflict of interest was reported by the author(s).
20244116432024410643202441015420241115ppublish38594936NIHMS2030572PMC1156713510.1080/03014460.2024.2310724El Agaba, Rohrscheib M, Tzamaloukas AH. 2012. The renal concentrating mechanism and the clinical consequences of its loss. Niger Med J. 53(3):1–15. doi: 10.4103/0300-1652.104376.10.4103/0300-1652.104376PMC353102623293407Bassett DRJ, Wyatt HR, Thompson H, Peters JC, Hill JO. 2010. Pedometer-measured physical activity and health behaviors in U.S. Adults. Med Sci Sports Exerc 42(10):1819–1825. doi: 10.1249/MSS.0b013e3181dc2e54.10.1249/MSS.0b013e3181dc2e54PMC292772820305579Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. 2021. Malaria-associated acute kidney injury in African Children: prevalence, pathophysiology, impact, and management challenges. int J Nephrol Renovasc Dis. 14:235–253. doi: 10.2147/IJNRD.S239157.10.2147/IJNRD.S239157PMC827682634267538Berko J, Goetzel RZ, Roemer EC, Kent K, Marchibroda J. 2016. Results from the bipartisan policy center’s CEO council physical activity challenge to American Business. J Occup Environ Med. 58(12):1239–1244. doi: 10.1097/JOM.0000000000000897.10.1097/JOM.0000000000000897PMC518111927930485Bethancourt HJ, Swanson ZS, Nzunza R, Huanca T, Conde E, Kenney WL, Young SL, Ndiema E, Braun D, Pontzer H, et al. 2021. Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments. Am J Hum Biol. 33(1):e23447. doi: 10.1002/ajhb.23447.10.1002/ajhb.23447PMC882958832583580Bethancourt HJ, Swanson ZS, Nzunza R, Young SL, Lomeiku L, Douglass MJ, Braun DR, Ndiema EK, Pontzer H, Rosinger AY. 2022. The co-occurrence of water insecurity and food insecurity among Daasanach pastoralists in northern Kenya. Public Health Nutr. 26(3):1–11. doi: 10.1017/S1368980022001689.10.1017/S1368980022001689PMC998970835941080Choi L, Beck C, Liu Z, Moore R, Matthews C, Buchowski M. 2021. PhysicalActivity: Process accelerometer data for physical activity measurement. R package version 0.2–4. https://CRAN.R-project.org/package=PhysicalActivityChristopher L, Madimenos FC, Bribiescas RG, Urlacher SS, Snodgrass JJ, Sugiyama LS, Pontzer H. 2019. High energy requirements and water throughput of adult Shuar forager-horticulturalists of Amazonian Ecuador. Am J Hum Biol. 31(2):e23223. doi: 10.1002/ajhb.23223.10.1002/ajhb.2322330801886Conroy AL, Opoka RO, Bangirana P, Idro R, Ssenkusu JM, Datta D, Hodges JS, Morgan C, John CC. 2019. Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria. BMC Med. 17(1):98. doi: 10.1186/s12916-019-1332-7.10.1186/s12916-019-1332-7PMC652824231109328Dugas LR, Harders R, Merrill S, Ebersole K, Shoham DA, Rush EC, Assah FK, Forrester T, Durazo-Arvizu RA, Luke A. 2011. Energy expenditure in adults living in developing compared with industrialized countries: a meta-analysis of doubly labeled water studies. Am J Clin Nutr. 93(2):427–441. doi: 10.3945/ajcn.110.007278.10.3945/ajcn.110.007278PMC302143421159791Ford LB, Bethancourt HJ, Swanson ZS, Nzunza R, Wutich A, Brewis A, Young S, Almeida DM, Douglass M, Ndiema EK, et al. 2023. Water insecurity, water borrowing and psychosocial stress among Daasanach pastoralists in northern Kenya. Water Int. 48(1):63–86. doi: 10.1080/02508060.2022.2138050.10.1080/02508060.2022.2138050PMC1112623138800511Gurven MD, Trumble BC, Stieglitz J, Yetish G, Cummings D, Blackwell AD, Beheim B, Kaplan HS, Pontzer H. 2016. High resting metabolic rate among Amazonian forager-horticulturalists experiencing high pathogen burden. Am J Phys Anthropol. 161(3):414–425. doi: 10.1002/ajpa.23040.10.1002/ajpa.23040PMC507525727375044IAEA. 2009. Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques. Vienna: I.A.E.A.Keadle SK, Shiroma EJ, Freedson PS, Lee I-M. 2014. Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study. BMC Public Health. 14(1):1210. doi: 10.1186/1471-2458-14-1210.10.1186/1471-2458-14-1210PMC424766125421941Kleiner SM. 1999. Water: an essential but overlooked nutrient. J Am Diet Assoc. 99(2):200–206. doi: 10.1016/S0002-8223(99)00048-6.10.1016/S0002-8223(99)00048-69972188Koopmans LC, van Wolfswinkel ME, Hesselink DA, Hoorn EJ, Koelewijn R, van Hellemond JJ, van Genderen PJJ. 2015. Acute kidney injury in imported Plasmodium falciparum malaria. Malar J. 14(1):523. doi: 10.1186/512936-015-1057-9.10.1186/512936-015-1057-9PMC469023326702815Luke A, Dugas LR, Ebersole K, Durazo-Arvizu RA, Cao G, Schoeller DA, Adeyemo A, Brieger WR, Cooper RS. 2009. Energy expenditure does not predict weight change in either Nigerian or African American women. Am J Clin Nutr. 89(1):169–176. doi: 10.3945/ajcn.2008.26630.10.3945/ajcn.2008.26630PMC264771119056567Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Curhan GC, Willett WC, Giovannucci EL. 1999. Fluid Intake and the Risk of Bladder Cancer in Men. N Engl J Med. 340(18):1390–1397. doi: 10.1056/NEJM199905063401803.10.1056/NEJM19990506340180310228189Mwamidi D, Renom JG, Fernandez-Llamazares Onrubia A, Burgas Riera D, Domínguez P, Cabeza-Jaimejuan MDM. 2018. Contemporary pastoral commons in East Africa as OECMs: a case study from the Daasanach community. Parks Int J Prot Areas Conserv. 24:79–88. doi: 10.2305/IUCN.CH.2018.PARKS-24-SIDMM.en.10.2305/IUCN.CH.2018.PARKS-24-SIDMM.enNamazzi R, Batte A, Opoka RO, Bangirana P, Schwaderer AL, Berrens Z, Datta D, Goings M, Ssenkusu JM, Goldstein SL, et al. 2022. Acute kidney injury, persistent kidney disease, and post-discharge morbidity and mortality in severe malaria in children: a prospective cohort study. eClinicalMedicine. 44:101292. doi: 10.1016/j.eclinm.2022.101292.10.1016/j.eclinm.2022.101292PMC885034035198918Noakes TD. 1998. Fluid and electrolyte disturbances in heat illness. Int J Sports Med. 19(S 2):S146–S149. doi: 10.1055/s-2007-971982.10.1055/s-2007-9719829694423Opiyo F 2013. Trend analysis of rainfall and temperature variability in arid environment of Turkana, Kenya. Environ Res J. 8:30–43.Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc Natl Acad Sci U S A. 107(25):11245–11249. doi: 10.1073/pnas.1001824107.10.1073/pnas.1001824107PMC289514320534500Pearle MS. 2001. Prevention of nephrolithiasis. Curr Opin Nephrol Hypertens. 10(2):203–209. doi: 10.1097/00041552-200103000-00008.10.1097/00041552-200103000-0000811224695Pontzer H 2018. Energy constraint as a novel mechanism linking exercise and health. Physiology. 33(6):384–393. doi: 10.1152/physiol.00027.2018.10.1152/physiol.00027.201830303776Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Cooper RS, Schoeller DA, Luke A. 2016. Constrained total energy expenditure and metabolic adaptation to physical activity in adult humans. Curr Biol. 26(3):410–417. doi: 10.1016/j.cub.2015.12.046.10.1016/j.cub.2015.12.046PMC480303326832439Pontzer H, McGrosky A. 2022. Balancing growth, reproduction, maintenance, and activity in evolved energy economies. Curr Biol. 32(12):R709–R719. doi: 10.1016/j.cub.2022.05.018.10.1016/j.cub.2022.05.01835728556Pontzer H, Raichlen DA, Wood BM, Emery Thompson M, Racette SB, Mabulla AZP, Marlowe FW. 2015. Energy expenditure and activity among Hadza hunter-gatherers. Am J Hum Biol. 27(5):628–637. doi: 10.1002/ajhb.22711.10.1002/ajhb.2271125824106Pontzer H, Raichlen DA, Wood BM, Mabulla AZP, Racette SB, Marlowe FW. 2012. Hunter-Gatherer energetics and human obesity. PLOS One. 7(7):e40503. doi: 10.1371/journal.pone.0040503.10.1371/journal.pone.0040503PMC340506422848382Pontzer H, Wood BM, Raichlen DA. 2018. Hunter-gatherers as models in public health. Obes Rev. 19 Suppl 1(S1):24–35. doi: 10.1111/obr.12785.10.1111/obr.1278530511505Pontzer H, Yamada Y, Sagayama H, Ainslie PN, Andersen LF, Anderson LJ, Arab L, Baddou I, Bedu-Addo K, Blaak EE, et al. 2021. Daily energy expenditure through the human life course. Science. 373(6556):808–812. doi: 10.1126/science.abe5017.10.1126/science.abe5017PMC837070834385400Raman A, Schoeller DA, Subar AF, Troiano RP, Schatzkin A, Harris T, Bauer D, Bingham SA, Everhart JE, Newman AB, et al. 2004. Water turnover in 458 American adults 40–79yr of age. Am J Physiol Renal Physiol. 286(2):F394–F401. doi: 10.1152/ajprenal.00295.2003.10.1152/ajprenal.00295.200314600032Rimbach R, Yamada Y, Sagayama H, Ainslie PN, Anderson LF, Anderson LJ, Arab L, Baddou I, Bedu-Addo K, Blaak EE, et al. 2022. Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition. Nat Commun. 13(1):99. doi: 10.1038/s41467-021-27246-z.10.1038/s41467-021-27246-zPMC874865235013190Roncal-Jimenez C, Lanaspa MA, Jensen T, Sanchez-Lozada LG, Johnson RJ. 2015. Mechanisms by which dehydration may lead to chronic kidney disease. Ann Nutr Metab. 66 Suppl 3(Suppl. 3):10–13. doi: 10.1159/000381239.10.1159/00038123926088040Rosinger AY. 2020. Biobehavioral variation in human water needs: how adaptations, early life environments, and the life course affect body water homeostasis. Am J Hum Biol. 32(1):e23338. doi: 10.1002/ajhb.23338.10.1002/ajhb.2333831631450Rosinger AY. 2023. Water needs, water insecurity, and human biology. Annu Rev Anthropol. 52(1):93–113. doi: 10.1146/annurev-anthro-052721-090331.10.1146/annurev-anthro-052721-090331Rosinger AY, Bethancourt H, Swanson ZS, Nzunza R, Saunders J, Dhanasekar S, Kenney WL, Hu K, Douglass MJ, Ndiema E, et al. 2021. Drinking water salinity is associated with hypertension and hyper-dilute urine among Daasanach pastoralists in Northern Kenya. Sci Total Environ. 770:144667. doi: 10.1016/j.scitotenv.2020.144667.10.1016/j.scitotenv.2020.144667PMC796942033515884Sagawa T 2006. Wives’ domestic and political activities at home: the space of coffee drinking among the Daasanetch of Southwestern Ethiopia. Afr Stud Monogr. 27(2):63–86.Sands JM, Layton HE. 2014. Advances in Understanding the Urine-Concentrating Mechanism. Annu Rev Physiol. 76(1):387–409. doi: 10.1146/annurev-physiol-021113-170350.10.1146/annurev-physiol-021113-17035024245944Sasaki JE, John D, Freedson PS. 2011. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 14(5):411–416. doi: 10.1016/j.jsams.2011.04.003.10.1016/j.jsams.2011.04.00321616714Sawka MN, Cheuvront SN, Carter R III. 2005. Human water needs. Nutr Rev. 63(6Pt 2):S30–S39. doi: 10.1111/j.1753-4887.2005.tb00152.x.10.1111/j.1753-4887.2005.tb00152.x16028570Shimamoto H, Komiya S. 2000. The turnover of body water as an indicator of health. J Physiol Anthropol Appl Human Sci. 19(5):207–212. doi: 10.2114/jpa.19.207.10.2114/jpa.19.20711155349Speakman JR, Yamada Y, Sagayama H, Berman ESF, Ainslie PN, Andersen LF, Anderson LJ, Arab L, Baddou I, Bedu-Addo K, et al. 2021. A standard calculation methodology for human doubly labeled water studies. Cell Rep Med. 2(2):100203. doi: 10.1016/j.xcrm.2021.100203.10.1016/j.xcrm.2021.100203PMC789779933665639Swanson ZS. 2021. The effect of lifestyle change on health and early childhood growth in Daasanach Pastoralists Living in Northern Kenya [Internet]. [accessed 2023 Aug 14]. https://dukespace.lib.duke.edu/dspace/handle/10161/23028.Swanson ZS, Pontzer H. 2020. Water turnover among human populations: effects of environment and lifestyle. Am J Hum Biol. 32(1):e23365. doi: 10.1002/ajhb.23365.10.1002/ajhb.2336531782865Tang R, Wang J-Y, Lo S-K, Hsieh L-L. 1999. Physical activity, water intake and risk of colorectal cancer in Taiwan: a hospital-based case-control study. Int J Cancer. 82(4):484–489. doi: 10.1002/(SICI)1097-0215(19990812)82:4<484::AID-IJC3>3.0.CO;2-A.10.1002/(SICI)1097-0215(19990812)82:4<484::AID-IJC3>3.0.CO;2-A10404059Thurber C, Dugas LR, Ocobock C, Carlson B, Speakman JR, Pontzer H. 2019. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci Adv. 5(6):eaaw0341. doi: 10.1126/sciadv.aaw0341.10.1126/sciadv.aaw0341PMC655118531183404Tugjamba N, Walkerden G, Miller F. 2023. Adapting nomadic pastoralism to climate change. Clim Change. 176(4):28. doi: 10.1007/s10584-023-03509-0.10.1007/s10584-023-03509-0Urlacher SS, Snodgrass JJ, Dugas LR, Madimenos FC, Sugiyama LS, Liebert MA, Joyce CJ, Terán E, Pontzer H. 2021. Childhood daily energy expenditure does not decrease with market integration and is not related to adiposity in Amazonia. J Nutr. 151(3):695–704. doi: 10.1093/jn/nxaa361.10.1093/jn/nxaa36133454748Yamada Y, Zhang X, Henderson MET, Sagayama H, Pontzer H, Watanabe D, Yoshida T, Kimura M, Ainslie PN, Andersen LF, et al. 2022. Variation in human water turnover associated with environmental and lifestyle factors. Science. 378(6622):909–915. doi: 10.1126/science.abm8668.10.1126/science.abm8668PMC976434536423296