Balbiani body of basal insects is potentially involved in multiplication and selective elimination of mitochondria.

Sci Rep

Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.

Published: April 2024

Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004008PMC
http://dx.doi.org/10.1038/s41598-024-58997-6DOI Listing

Publication Analysis

Top Keywords

balbiani body
8
multiplication selective
8
selective elimination
8
mitochondria generation
8
individual mitochondria
8
mitochondria
7
body basal
4
basal insects
4
insects involved
4
involved multiplication
4

Similar Publications

Dynamic maternal synthesis and segregation of the germ plasm organizer, Bucky ball, in chicken oocytes and follicles.

Sci Rep

November 2024

Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Stem Cell Unit, Mariensee, Höltystr. 10, 31535, Neustadt, Germany.

Maternal germ plasm determines the germline in birds. Previously, we proposed the chicken-specific Bucky ball (cBuc) as a functional equivalent of the zebrafish germ plasm organizer. This study demonstrated the maternal cBuc synthesis, and verified a highly dynamic distribution of Bucky ball from oocyte nests to maturing follicles using specific antibodies.

View Article and Find Full Text PDF

In mammalian females, the transition from dormancy in primordial follicles to follicular development is critical for maintaining ovarian function and reproductive longevity. In mice, the quiescent primary oocyte of the primordial follicle contains a Balbiani body (B-body), an organelle aggregate comprised of a spherical structure of Golgi complexes. Here we show that the structure of the B-body is maintained by microtubules and actin.

View Article and Find Full Text PDF

Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation.

View Article and Find Full Text PDF

Balbiani body of basal insects is potentially involved in multiplication and selective elimination of mitochondria.

Sci Rep

April 2024

Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.

Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies.

View Article and Find Full Text PDF

Sexually dimorphic dynamics of the microtubule network in medaka (Oryzias latipes) germ cells.

Development

March 2024

Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.

Gametogenesis is the process through which germ cells differentiate into sexually dimorphic gametes, eggs and sperm. In the teleost fish medaka (Oryzias latipes), a germ cell-intrinsic sex determinant, foxl3, triggers germline feminization by activating two genetic pathways that regulate folliculogenesis and meiosis. Here, we identified a pathway involving a dome-shaped microtubule structure that may be the basis of oocyte polarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!