Highly robust supramolecular polymer networks crosslinked by a tiny amount of metallacycles.

Nat Commun

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China.

Published: April 2024

Supramolecular polymeric materials have exhibited attractive features such as self-healing, reversibility, and stimuli-responsiveness. However, on account of the weak bonding nature of most noncovalent interactions, it remains a great challenge to construct supramolecular polymeric materials with high robustness. Moreover, high usage of supramolecular units is usually necessary to promote the formation of robust supramolecular polymeric materials, which restrains their applications. Herein, we describe the construction of highly robust supramolecular polymer networks by using only a tiny amount of metallacycles as the supramolecular crosslinkers. A norbornene ring-opening metathesis copolymer with a 120° dipyridine ligand is prepared and self-assembled with a 60° or 120° Pt(II) acceptor to fabricate the metallacycle-crosslinked polymer networks. With only 0.28 mol% or less pendant dipyridine units to form the metallacycle crosslinkers, the mechanical properties of the polymers are significantly enhanced. The tensile strengths, Young's moduli, and toughness of the reinforced polymers reach up to more than 20 MPa, 600 MPa, and 150 MJ/m, respectively. Controllable destruction and reconstruction of the metallacycle-crosslinked polymer networks are further demonstrated by the sequential addition of tetrabutylammonium bromide and silver triflate, indicative of good stimuli-responsiveness of the networks. These remarkable performances are attributed to the thermodynamically stable, but dynamic metallacycle-based supramolecular coordination complexes that offer strong linkages with good adaptive characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004166PMC
http://dx.doi.org/10.1038/s41467-024-47333-1DOI Listing

Publication Analysis

Top Keywords

polymer networks
16
robust supramolecular
12
supramolecular polymeric
12
polymeric materials
12
highly robust
8
supramolecular
8
supramolecular polymer
8
tiny amount
8
amount metallacycles
8
metallacycles supramolecular
8

Similar Publications

B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish.

Plant Foods Hum Nutr

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.

NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.

View Article and Find Full Text PDF

Gold Nanorods Decorated by Conjugated Microporous Polymers for Infrared Responsive Cytostatic Drug Delivery.

Langmuir

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.

Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.

View Article and Find Full Text PDF

3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.

View Article and Find Full Text PDF

Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.

Adv Healthc Mater

January 2025

Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!