Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proactive management of pumping stations using artificial intelligence (AI) technology is vital for effectively mitigating the impacts of flood events caused by climate change. Accurate water level forecasts are pivotal in advancing the intelligent operation of pumping stations. This study proposed a novel Transformer-LSTM model to offer accurate multi-step-ahead forecasts of the flood storage pond (FSP) and river water levels for the Zhongshan pumping station in Taipei, Taiwan. A total of 19,647 ten-minute-based datasets of pumping operation and storm sewer, FSP, and river water levels were collected between 2014 and 2020 and further divided into training (70 %), validation (10 %), and test (20 %) datasets for model construction. The results demonstrate that the proposed model dramatically outperforms benchmark models by producing more accurate and reliable water level forecasts at 10-minute (T + 1) to 60-minute (T + 6) horizons. The proposed model effectively enhances the connections between input factors through the Transformer module and increases the connectivity across consecutive time series using the LSTM module. This study reveals interconnected dynamics among pumping operation and storm sewer, FSP, and river water levels, enhancing flood management. Understanding these dynamics is crucial for effective execution of management strategies and infrastructure revitalization against climate impacts. The Transformer-LSTM model's forecasts encourage water practices, resilience, and disaster risk reduction for extreme weather events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!