Deep learning and radiomics-based approach to meningioma grading: exploring the potential value of peritumoral edema regions.

Phys Med Biol

Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.

Published: April 2024

To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques.The primary focus is on developing a transfer learning-based meningioma feature extraction model (MFEM) that leverages both vision transformer (ViT) and convolutional neural network (CNN) architectures. Additionally, the study explores the significance of the PTE region in enhancing the grading process.The proposed method demonstrates excellent grading accuracy and robustness on a dataset of 98 meningioma patients. It achieves an accuracy of 92.86%, precision of 93.44%, sensitivity of 95%, and specificity of 89.47%.This study provides valuable insights into preoperative meningioma grading by introducing an innovative method that combines radiomics and deep learning techniques. The approach not only enhances accuracy but also reduces observer subjectivity, thereby contributing to improved clinical decision-making processes.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad3cb1DOI Listing

Publication Analysis

Top Keywords

deep learning
12
meningioma grading
12
potential peritumoral
8
peritumoral edema
8
radiomics deep
8
meningioma
5
grading
5
learning radiomics-based
4
radiomics-based approach
4
approach meningioma
4

Similar Publications

Background: Medical images play an important role in diagnosis and treatment of pediatric solid tumors. The field of radiology, pathology, and other image-based diagnostics are getting increasingly important and advanced. This indicates a need for advanced image processing technology such as Deep Learning (DL).

View Article and Find Full Text PDF

Design and validation of the reflection skills self-assessment questionnaire (RSSAQ).

J Educ Health Promot

November 2024

Medical Education Research Center, Medical Education Department, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.

Background: Reflection is one of the main components of the medical sciences curriculum. It is one of the learner-centered educational strategies, leading to deep learning, and is necessary to attain professional capabilities. A pertinent challenge is how to assess reflection.

View Article and Find Full Text PDF

Introduction: Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We aimed to develop a deep-learning algorithm using OCT to detect AD and MCI.

Methods: We performed a cross-sectional study involving 228 Asian participants (173 cases/55 controls) for model development and testing on 68 Asian (52 cases/16 controls) and 85 White (39 cases/46 controls) participants.

View Article and Find Full Text PDF

Objective: Lower limb malalignment can complicate symptoms and accelerate knee osteoarthritis (OA), necessitating consideration in study population selection. In this study, we develop and validate a deep learning model that classifies leg alignment as "normal" or "malaligned" from knee antero-posterior (AP)/postero-anterior (PA) radiographs alone, using an adjustable hip-knee-ankle (HKA) angle threshold.

Material And Methods: We utilized 8878 digital radiographs, including 6181 AP/PA full-leg x-rays (LLRs) and 2697 AP/PA knee x-rays (2292 with positioning frame, 405 without).

View Article and Find Full Text PDF

Contemporary research in 3D object detection for autonomous driving primarily focuses on identifying standard entities like vehicles and pedestrians. However, the need for large, precisely labelled datasets limits the detection of specialized and less common objects, such as Emergency Medical Service (EMS) and law enforcement vehicles. To address this, we leveraged the Car Learning to Act (CARLA) simulator to generate and fairly distribute rare EMS vehicles, automatically labelling these objects in 3D point cloud data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!