. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andcell tracking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad3c90 | DOI Listing |
Sci Data
January 2025
Department of Earth and Environmental Engineering, Columbia University, New York, USA.
The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.
View Article and Find Full Text PDFSci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Medical Imaging, Pingyin people's Hospital, Jinan 250400, China.
Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Mechanical Engineering, University of Michigan, USA.
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidad de Santiago de Chile, Santiago, Chile.
Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!