The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT, POT, and POT) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.120815DOI Listing

Publication Analysis

Top Keywords

pyrolysis oils
20
coal flotation
16
oils recycled
8
recycled waste
8
collector coal
8
pot pot
8
ash content
8
carbon chains
8
functional groups
8
coal
7

Similar Publications

Sustainable approach to polystyrene management and bioinsecticide production: Biodegradation by Tenebrio molitor larvae co-fed with residual biomass and bioactivity of frass pyrolysis bio-oil against insect pests.

Bioresour Technol

December 2024

Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina. Electronic address:

Tenebrio molitor has gained attention as a potential solution for plastic pollution. This study explored the biodegradation of polystyrene (PS) by mealworms co-fed with rice bran (RB) under an optimized rearing scheme. The RB co-diet significantly increased PS consumption by two-fold compared to wheat bran (WB).

View Article and Find Full Text PDF

Aging analyses of transformer oil based on optical properties of LIF spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Tehran, Iran; Faculty of Science, Department of Physics, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran.

Here, the real time pyrolysis characteristics, the degradation degree and the aging time of the transformer oil have been investigated using laser induced fluorescence (LIF) spectroscopy. The signal elevation up to four-fold and the lucid red shift up to 10 nm are obtained against those of fresh oil. The fluorescence signal and the corresponding spectral shift are demonstrated to follow a linear correlation in terms of aging time.

View Article and Find Full Text PDF

Characterization of polyolefins-based pyrolysis oils: A comparison between one-dimensional gas chromatography and two-dimensional gas chromatography.

J Chromatogr A

January 2025

Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16801, USA; Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA, 16801, USA; Institute of Energy and the Environment, Pennsylvania State University, University Park, PA, 16801, USA. Electronic address:

Article Synopsis
  • * Using the more advanced GC×GC technique, researchers achieved significantly better product identification, detecting 2.8 to 5.3 times more peaks for various plastic types compared to traditional GC methods.
  • * The pyrolysis of mixed plastic types also revealed new chemical products and interaction effects, including a notable increase in toluene yield from co-pyrolysis experiments, indicating complex chemical behavior during the process.
View Article and Find Full Text PDF
Article Synopsis
  • - Phenolic antioxidants like tert-butylhydroquinone (TBHQ) are used to extend the shelf life of edible oils, but excessive amounts can harm food quality and health, highlighting the need for effective TBHQ detection methods.
  • - Researchers synthesized a new material called NiAl-LDH@GC-800 by growing nickel-aluminum double hydroxide on glucose carbon spheres and then pyrolyzing it at 800 °C, confirming its structure through various microscopy and spectroscopy techniques.
  • - This new material was used to create an electrochemical sensor for TBHQ that demonstrated high sensitivity and a low detection limit, successfully testing TBHQ levels in different edible oils like chili, peanut, and rapeseed oil.
View Article and Find Full Text PDF

The exhaustion of conventional light oils necessitates the shift towards unconventional sources such as biomass, heavy oil, oil shale, and coal. Non-catalytic thermal cracking by a free radical mechanism is at the heart of the upgrading, prior to refining into valuable products. However, thermal pyrolysis is hindered by the formation of asphaltenes, precursors to coke, limiting cracking, causing equipment fouling, and reducing product stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!