The rise in oil trade and transportation has led to a continuous increase in the risk of oil spills, posing a serious worldwide concern. However, there is a lack of numerical models for predicting oil spill transport in freshwater, especially under icy conditions. To tackle this challenge, we developed a prediction system for oil with ice modeling by coupling the General NOAA Operational Modeling Environment (GNOME) model with the Great Lakes Operational Forecast System (GLOFS) model. Taking Lake Erie as a pilot study, we used observed drifter data to evaluate the performance of the coupled model. Additionally, we developed six hypothetical oil spill cases in Lake Erie, considering both with and without ice conditions during the freezing, stable, and melting seasons spanning from 2018 to 2022, to investigate the impacts of ice cover on oil spill processes. The results showed the effective performance of the coupled model system in capturing the movements of a deployed drifter. Through ensemble simulations, it was observed that the stable season with high-concentration ice had the most significant impact on limiting oil transport compared to the freezing and melting seasons, resulting in an oil-affected open water area of 49 km on day 5 with ice cover, while without ice cover it reached 183 km. The stable season with high-concentration ice showed a notable reduction in the probability of oil presence in the risk map, whereas this reduction effect was less prominent during the freezing and melting seasons. Moreover, negative correlations between initial ice concentration and oil-affected open water area were consistent, especially on day 1 with a linear regression R-squared value of 0.94, potentially enabling rapid prediction. Overall, the coupled model system serves as a useful tool for simulating oil spills in the world's largest freshwater system, particularly under icy conditions, thus enhancing the formulation of effective emergency response strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120810 | DOI Listing |
Molecules
December 2024
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
Herein, a high selective epoxidation of isobutene was achieved by heterogeneously dispersed MoSe with tert-butyl hydroperoxide (TBHP), which further showed versatile substrate scopes and well-retained activity among recycling tests. A rational mechanism is proposed based on extensive control experiments and electron paramagnetic resonance spectroscopy, surprisingly unveiling the metal-oxo and radical mediated pathways dramatically accelerated by hydrogen bonds of hexafluoroisopropanol (HFIP).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Mechanical Engineering Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania.
The petroleum industry is essential for supplying crude oil, which is vital for fuel and chemicals and drives substantial investments in technologies, especially in regard to increasing the durability of the drill strings used in wellbore construction. This study aims to establish and to validate a hardbanding technology for reconditioning NC50 tool joints subjected to wear, thereby increasing drill pipe durability and reducing the risk of failure during drilling, which can lead to ecological pollution, human safety issues, and financial costs. The hardbanding of the tool joints was carried out using the gas metal arc welding process (GMAW) with two different wear-resistant wires, ARNCO 100XT and FLUXOFIL M58.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging.
View Article and Find Full Text PDFOdontocetes are globally distributed and are foundational to the structure and function of marine food webs, and hence bycatch impacts from gillnet fishing need to be considered in the context of their conservation and population viability. Currently, global gillnet bycatch numbers are unknown yet are estimated to be the greatest in Asia, East Africa, and the west coasts of North and South America. Here we provide the first global meta-analyses of small- and large-scale gillnet bycatch estimates of odontocetes during 1990-2020, compiling population size, estimated gillnet bycatch, and conservation status in support of geographical and species-specific risk estimates.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.
Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!