A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing machine learning for EEG signal analysis: Innovations in depth of anaesthesia assessment. | LitMetric

Harnessing machine learning for EEG signal analysis: Innovations in depth of anaesthesia assessment.

Artif Intell Med

School of Mathematics, Physics and Computing, University of Southern Queensland, Australia. Electronic address:

Published: May 2024

Anaesthesia, crucial to surgical practice, is undergoing renewed scrutiny due to the integration of artificial intelligence in its medical use. The precise control over the temporary loss of consciousness is vital to ensure safe, pain-free procedures. Traditional methods of depth of anaesthesia (DoA) assessment, reliant on physical characteristics, have proven inconsistent due to individual variations. In response, electroencephalography (EEG) techniques have emerged, with indices such as the Bispectral Index offering quantifiable assessments. This literature review explores the current scope and frontier of DoA research, emphasising methods utilising EEG signals for effective clinical monitoring. This review offers a critical synthesis of recent advances, specifically focusing on electroencephalography (EEG) techniques and their role in enhancing clinical monitoring. By examining 117 high-impact papers, the review delves into the nuances of feature extraction, model building, and algorithm design in EEG-based DoA analysis. Comparative assessments of these studies highlight their methodological approaches and performance, including clinical correlations with established indices like the Bispectral Index. The review identifies knowledge gaps, particularly the need for improved collaboration for data access, which is essential for developing superior machine learning models and real-time predictive algorithms for patient management. It also calls for refined model evaluation processes to ensure robustness across diverse patient demographics and anaesthetic agents. The review underscores the potential of technological advancements to enhance precision, safety, and patient outcomes in anaesthesia, paving the way for a new standard in anaesthetic care. The findings of this review contribute to the ongoing discourse on the application of EEG in anaesthesia, providing insights into the potential for technological advancement in this critical area of medical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.102869DOI Listing

Publication Analysis

Top Keywords

machine learning
8
depth anaesthesia
8
electroencephalography eeg
8
eeg techniques
8
indices bispectral
8
clinical monitoring
8
potential technological
8
review
6
eeg
5
anaesthesia
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!