Nanoporous cobalt-doped AlNi/NiO architecture for high performing hydrogen evolution at high current densities.

J Colloid Interface Sci

Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China. Electronic address:

Published: July 2024

Engineering platinum-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is essential for electrochemical hydrogen production. In this paper, we report the synthesis of cobalt-doped AlNi/NiO (Co-AlNi/NiO) electrode with three-dimensional nanoporous structure via chemical dealloying method. Density functional theory (DFT) calculations reveal that Co-AlNi/NiO can accelerate water adsorption / dissociation and optimize adsorption-desorption energies of H* intermediates, thus improving the intrinsic HER activity. Both the introduction of Co and Al can efficiently ameliorate the electronic density around Ni sites of NiO and AlNi, which can effectively reduce the energy barrier towards Volmer-Heyrovsky reaction and thus synergistically promote the hydrogen evolution. Benefiting from the large electrochemical active surface area, high electrical conductivity and electronic effect, the nanoporous Co-AlNi/NiO catalyst exhibits remarkable HER activity with an overpotential of 73 mV at a current density of 10 mA cm in alkaline condition, outperforming most of the reported non-precious metal catalysts. The nanoporous Co-AlNi/NiO catalyst can operate continuously over 1000 h at high current densities with a robust stability. This work provides a new vision for the development of low-cost and efficient electrocatalysts for energy conversion applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.009DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
cobalt-doped alni/nio
8
high current
8
current densities
8
nanoporous co-alni/nio
8
co-alni/nio catalyst
8
high
5
nanoporous
4
nanoporous cobalt-doped
4
alni/nio architecture
4

Similar Publications

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.

Nanomaterials (Basel)

January 2025

Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!