Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona.

Water Res

Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China. Electronic address:

Published: June 2024

The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121574DOI Listing

Publication Analysis

Top Keywords

hyporheic zone
20
bpaf
14
unsaturated hyporheic
12
deposition sites
12
nps
9
cotransport nanoplastics
8
additive bisphenol
8
bisphenol bpaf
8
surface functionalization
8
associated contaminants
8

Similar Publications

The One Health concept, although formulated two decades ago, remains challenging to implement. It necessitates the integration of numerous scientific disciplines, diverse techniques and various professional expertise. Furthermore, it often requires the collaboration of different institutions, encompassing both scientific and administrative entities.

View Article and Find Full Text PDF

The influence of surface-groundwater interactions on nutrient dynamics in urban in-channel treatment systems.

Environ Monit Assess

December 2024

Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand.

In-channel water treatment systems remove excess nutrients through biological, chemical, and physical processes associated with the hyporheic zone. However, the impact of surface and groundwater interactions on these treatment processes is poorly understood. This research aims to assess the influence of varying groundwater conditions (neutral, drainage water, and groundwater seepage) and different bed sediment hydraulic conductivities on nitrogen and phosphorus dynamics in in-channel treatment systems.

View Article and Find Full Text PDF

Road salt chloride exposure in urban streambeds and links to groundwater - surface water interactions and salt sources.

Sci Total Environ

December 2024

Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada.

Groundwater transport of chloride (Cl) containing road salt deicers is an important contributor to salinization of fresh surface waters in temperate climates. While mass loading of salt to streams via groundwater has received greater recognition lately, only a few studies have demonstrated the unique risk posed by the direct discharge of salt-laden groundwater to aquatic life residing in the benthic zone (e.g.

View Article and Find Full Text PDF

The relationship between riparian vegetation buffer size and unionid mussel habitats.

Sci Total Environ

December 2024

Physical Ecology Laboratory, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada. Electronic address:

The effectiveness of riparian vegetation buffers at conserving hyporheic habitats used by freshwater unionid mussels is not well understood. A comparison of sites with intact vs. fragmented vegetation buffers in the east branch of the Sydenham River (Ontario, Canada) revealed differences.

View Article and Find Full Text PDF

Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater.

J Environ Sci (China)

May 2025

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Article Synopsis
  • Micro(nano)plastics are emerging pollutants found in hyporheic zones and groundwater around the world, raising concerns about their environmental impact.
  • Recent research has explored their sources, distribution, and transport mechanisms, but a comprehensive theoretical framework for understanding their behavior in these systems is still lacking.
  • This review synthesizes current knowledge on micro(nano)plastic pollution, categorizes transport mechanisms into mechanical, physicochemical, and biological processes, and suggests directions for future research to better understand their cycles and interactions in groundwater ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!