Printing structurally colored patterns is of great importance for providing customized graphics for various purposes. Although a direct writing technique has been developed, the use of colloidal dispersions as photonic inks requires delicate printing conditions and restricts the mechanical and optical properties of printed patterns. In this work, we produce elastic photonic microbeads through scalable bulk emulsification and formulate photonic inks containing microbeads for direct writing. To produce the microbeads, a photocurable colloidal dispersion is emulsified into a highly concentrated sucrose solution via vortexing, which results in spherical emulsion droplets with a relatively narrow size distribution. The microbeads are produced by photopolymerization and are then suspended in urethane acrylate resin at volume fractions of 0.35-0.45. The photonic inks retain high color saturation of the microbeads and offer enhanced printability and dimensional control on various target substrates including fabrics, papers, and even skins. Importantly, the printed graphics show high mechanical stability as the elastic microbeads are embedded in the polyurethane matrix. Moreover, the colors show a wide viewing angle and low-angle dependency due to the optical isotropy of individual microbeads and light refraction at the air-matrix interface. We postulate that this versatile direct writing technique is potentially useful for structural color coating and printing on the surfaces of arbitrary 3D objects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01224 | DOI Listing |
Sci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFJpn J Ophthalmol
January 2025
Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan.
Purpose: To assess the effects of modifying head position and of static ocular counter-rolling (OCR) on abduction and adduction in saccadic eye movements using a head-mounted video-oculographic device.
Study Design: A clinical observational study.
Methods: The peak velocities and amplitude gains of visually guided 12° saccades were binocularly measured in 21 healthy volunteers with their heads in the upright vertical (0°) and horizontal (± 90°, bilateral side-lying) postures, and in 6 participants with their head positions bilaterally tilted by 30°.
Int J Appl Basic Med Res
November 2024
Department of Pharmacology, Christian Medical College, Ludhiana, Punjab, India.
Background: A portfolio is a specific collection of student work and achievements in various areas. E-portfolio is an electronic collection that serves the purpose of storage and showcase with the ease of access for both students and evaluators. The knowledge and skills regarding immunization in medical students are of utmost importance for the successful implementation and conduction of the Universal Immunization Program in the country.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!