Improving Interfacial and Compressive Properties of Polyimide Fiber by Constructing Inorganic Layers on Fiber Surface.

ACS Appl Mater Interfaces

Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China.

Published: April 2024

The compressive performance of organic fiber has always been a key problem, limiting its development. In this paper, silicon oxide, alumina, and titanium oxide particles were separately deposited on the surface of high-strength and high-modulus polyimide (PI) fibers to form a structural supporting shell by using a magnetron sputtering method. The theoretical thickness was calculated by thermogravimetric analysis in good agreement with the actual thickness determined from scanning electron microscopy. The mechanics, surface, and interface properties of the measured fibers were analyzed mainly from the aspects of surface energy, interfacial shear strength (IFSS), and compression strength. The results showed that after magnetron sputtering, the inorganic shells were uniformly deposited on the surface of PI fiber, resulting in an increase in the content of inorganic elements as well as the roughness. As a result, the surface energy and IFSS of silica-coated fiber was increased by 174 and 85.6%, respectively, and compression strength was increased by 45.7%. This study provides a new approach for improving the interface property and compression strength of high-strength and high-modulus PI-fiber-reinforced composites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02718DOI Listing

Publication Analysis

Top Keywords

compression strength
12
deposited surface
8
high-strength high-modulus
8
magnetron sputtering
8
surface energy
8
surface
6
fiber
5
improving interfacial
4
interfacial compressive
4
compressive properties
4

Similar Publications

Pumice aggregates with low density and high porosity are widely used in lightweight concrete. The high water retention ability of pumice aggregates adversely affects the properties of fresh concrete. Additionally, pumice aggregates' inadequate mechanical strength and durability hinder concrete performance.

View Article and Find Full Text PDF

In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.

View Article and Find Full Text PDF

Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.

View Article and Find Full Text PDF

Plug and abandonment of offshore oil wells is a costly and time-consuming process, yet it is necessary for the ever-increasing number of mature fields in the region of the Danish North Sea, as well as globally. Current practices ensuring durable solutions for the complete zonal isolation of oil wells have a large environmental impact. This paper proposes a novel resin that could be mixed on the platform and pumped into the tubing in a liquid state.

View Article and Find Full Text PDF

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!