A three-terminal memristor with an ultrasmall footprint of only 0.07 μm and critical dimensions of 70 nm × 10 nm × 6 nm is introduced. The device's feature is the presence of a gate contact, which enables two operation modes: either tuning the set voltage or directly inducing a resistance change. In - mode, we demonstrate that by changing the gate voltages between ±1 V one can shift the set voltage by 69%. In pulsing mode, we show that resistance change can be triggered by a gate pulse. Furthermore, we tested the device endurance under a 1 kHz operation. In an experiment with 2.6 million voltage pulses, we found two distinct resistance states. The device response to a pseudorandom bit sequence displays an open eye diagram and a success ratio of 97%. Our results suggest that this device concept is a promising candidate for a variety of applications ranging from Internet-of-Things to neuromorphic computing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044582PMC
http://dx.doi.org/10.1021/acsnano.3c11373DOI Listing

Publication Analysis

Top Keywords

set voltage
8
resistance change
8
versatile nanoscale
4
nanoscale three-terminal
4
three-terminal memristive
4
memristive switch
4
switch enabled
4
enabled gating
4
gating three-terminal
4
three-terminal memristor
4

Similar Publications

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.

View Article and Find Full Text PDF

Rapid Determination of Water-Soluble Vitamins in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry.

ACS Omega

January 2025

Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.

Water-soluble vitamins play essential roles in normal body functions and metabolic activities. However, few methods have simultaneously measured all nine water-soluble vitamins in biological matrices. In this study, we developed a sensitive and accurate method for the simultaneous measurement of thiamine (B1), riboflavin (B2), nicotinamide (B3), pantothenic acid (B5), 4-pyridoxic acid (B6), biotin (B7), 5-methyltetrahydrofolic acid (B9), ascorbic acid (VC), and methylmalonic acid (MMA) in human serum.

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

NEMS generated electromechanical frequency combs.

Microsyst Nanoeng

January 2025

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

This paper presents a novel technique for low-power generation of frequency combs (FC) over a wide frequency range. It leverages modal interactions between electrical and mechanical resonators in electrostatic NEMS operating in air to provide a simple architecture for FC generators. A biased voltage signal drives the electrical resonator at resonance which is set to match an integer submultiple of twice the mechanical resonator's resonance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!