Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.202300840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!