A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-Destructive Near-Infrared Technology for Efficient Cannabinoid Analysis in Cannabis Inflorescences. | LitMetric

In the evolving field of cannabis research, scholars are exploring innovative methods to quantify cannabinoids rapidly and non-destructively. This study evaluates the effectiveness of a hand-held near-infrared (NIR) device for quantifying total cannabidiol (total CBD), total delta-9-tetrahydrocannabinol (total THC), and total cannabigerol (total CBG) in whole cannabis inflorescences. Employing pre-processing techniques, including standard normal variate (SNV) and Savitzky-Golay (SG) smoothing, we aim to optimize the portable NIR technology for rapid and non-destructive cannabinoid analysis. A partial least-squares regression (PLSR) model was utilized to predict cannabinoid concentration based on NIR spectra. The results indicated that SNV pre-processing exhibited superior performance in predicting total CBD concentration, yielding the lowest root mean square error of prediction (RMSEP) of 2.228 and the highest coefficient of determination for prediction (RP) of 0.792. The ratio of performance to deviation (RPD) for total CBD was highest (2.195) with SNV. In contrast, raw data exhibited the least accurate predictions for total THC, with an RP of 0.812, an RPD of 2.306, and an RMSEP of 1.651. Notably, total CBG prediction showed unique characteristics, with raw data yielding the highest RP of 0.806. SNV pre-processing emerges as a robust method for precise total CBD quantification, offering valuable insights into the optimization of a hand-held NIR device for the rapid and non-destructive analysis of cannabinoid in whole inflorescence samples. These findings contribute to ongoing efforts in developing portable and efficient technologies for cannabinoid analysis, addressing the increasing demand for quick and accurate assessment methods in cannabis cultivation, pharmaceuticals, and regulatory compliance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975745PMC
http://dx.doi.org/10.3390/plants13060833DOI Listing

Publication Analysis

Top Keywords

total cbd
16
cannabinoid analysis
12
total
11
cannabis inflorescences
8
nir device
8
total thc
8
total cbg
8
rapid non-destructive
8
snv pre-processing
8
raw data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!