Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr06293g | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA.
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.
View Article and Find Full Text PDFClin Breast Cancer
December 2024
Hospital Universitario de Bellvitge, Gynecology, Hospitalet de Llobregat, Barcelona, Spain.
Purpose: To validate the Axillary Reverse Mapping (ARM) technique with indocyanine green (ICG), focusing on the detection rate and the procedure's feasibility. The predictive factors for metastatic involvement of ARM nodes are also analyzed to define the target population for ARM indication.
Methods: This prospective, observational, non-randomized study of patients with breast cancer included patients with an indication for axillary lymph node dissection (ALND) performed between June 2021 and June 2023.
J Oral Biosci
January 2025
Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan. Electronic address:
Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.
View Article and Find Full Text PDFOral Oncol
January 2025
Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!