Exploring rumen fermentation and microbial populations in Dhofari goats fed a chitosan-added diet.

Anim Biotechnol

Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.

Published: November 2024

The use of chitosan (CHI) in ruminant diets is a promising natural modifier for rumen fermentation, capable of modulating both the rumen pattern and microbial activities. The objective of this study was to explore the rumen fermentation and microbial populations in Dhofari goats fed a diet supplemented with CHI. A total of 24 Dhofari lactating goats (body weight, 27.32 ± 1.80 kg) were assigned randomly into three experimental groups ( = 8 ewes/group). Goats were fed a basal diet with either 0 (control), 180 (low), or 360 (high) mg CHI/kg of dietary dry matter (DM) for 45 days. Feeding high CHI linearly increased ( < 0.05) the propionate level and reduced the acetate, butyrate, and total protozoa count ( < 0.05). Ruminal ammonia nitrogen (NH-N) concentrations and the acetate:propionate ratio decreased linearly when goats were fed CHI ( < 0.05). The abundances of both and phyla were reduced ( < 0.05) with both CHI doses relative to the control. Both low and high CHI reduced ( < 0.05) the relative abundances of , , , , and populations. Adding CHI significantly decreased ( < 0.05) the abundances of , , and phyla compared to the control. Adding CHI to the diet reduces the abundance of fibrolytic-degrading bacteria, however, it increases the amylolytic-degrading bacteria. Application of 360 mg of CHI/kg DM modified the relative populations of ruminal microbes, which could enhance the rumen fermentation patterns in Dhofari goats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10495398.2024.2337748DOI Listing

Publication Analysis

Top Keywords

rumen fermentation
12
goats fed
12
fermentation microbial
8
microbial populations
8
populations dhofari
8
dhofari goats
8
exploring rumen
4
goats
4
fed chitosan-added
4
chitosan-added diet
4

Similar Publications

Introduction: The residual black wolfberry fruit (RBWF) is rich in nutrients and contains a diverse range of active substances, which may offer a viable alternative to antibiotics. This experiment was conducted to investigate the impact of varying levels of RBWF on the growth performance and rumen microorganisms of fattening sheep, and to quantify its economic benefits.

Methods: In this experiment, 40 three-month-old and male Duolang sheep with an average weight of 29.

View Article and Find Full Text PDF

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

A series of in vitro studies were conducted to explore the anti-methanogenic potential of five seaweeds collected from the Indian sea and to optimize the level(s) of incorporation of the most promising seaweed(s) into a straw and concentrate diet to achieve a significant reduction in methane (CH) production without disturbing rumen fermentation characteristics. A chemical composition analysis revealed a notable ash content varying between 55 and 70% in seaweeds. The crude protein content was highly variable and ranged between 3.

View Article and Find Full Text PDF

Capsaicin Modulates Ruminal Fermentation and Bacterial Communities in Beef Cattle with High-Grain Diet-Induced Subacute Ruminal Acidosis.

Microorganisms

January 2025

Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

This study was developed with the goal of exploring the impact of capsaicin on ruminal fermentation and ruminal bacteria in beef cattle affected by high-grain diet-induced subacute ruminal acidosis (SARA). In total, 18 healthy Simmental crossbred cattle were randomized into three separate groups ( = 6/group): (1) control diet (CON; forage-to-concentrate ratio = 80:20); (2) high-grain diet (SARA; forage-to-concentrate ratio = 20:80); and (3) high-grain diet supplemented with capsaicin (CAP; 250 mg/cattle/day). The study was conducted over a 60-day period.

View Article and Find Full Text PDF

Complex phytonutrients (CPS) have attracted extensive interest due to their anti-inflammatory effects. This investigation focused on the impact of CPS on rumen health in lambs on high-concentrate diets, emphasizing growth performance, ruminal fermentation, epithelial barrier integrity, ruminal metabolism, and microbial communities. A total of 54 lambs, 3 months old and with a 30.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!