The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975680 | PMC |
http://dx.doi.org/10.3390/plants13060795 | DOI Listing |
J Biol Chem
December 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan. Electronic address:
The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca) concentration modulates the mTORC1 pathway via binding of the Ca sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca/CaM modulates mTORC1 activity remains unclear.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA.
Lymphangioleiomyomatosis (LAM) is a cystic lung disease that primarily affects women. LAM is caused by the invasion of metastatic smooth muscle-like cells into the lung parenchyma, leading to abnormal cell proliferation, lung remodeling and progressive respiratory failure. LAM cells have TSC gene mutations, which occur sporadically or in people with Tuberous Sclerosis Complex.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Unidade Local de Saúde de Braga, Braga, PRT.
Lymphangioleiomyomatosis (LAM) is a rare, systemic neoplastic disease that primarily affects women of childbearing age. The disease can arise sporadically or in association with tuberous sclerosis. It is characterized by the proliferation of abnormal smooth muscle-like cells, leading to cystic lung destruction, accumulation of chylous fluid, and development of abdominal tumors.
View Article and Find Full Text PDFEur J Cancer Prev
November 2024
Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai.
Lack of efficient biomarkers and clinical translation of molecular typing impedes the implementation of targeted therapy for hepatocellular carcinoma (HCC). High-throughput sequencing techniques represented by next-generation sequencing (NGS) are tools for detecting targetable genes. The objective of this study is to explore the genetic alterations associated with clinicopathological features and the risk of recurrence/metastasis in HCC.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea.
Postmenopausal osteoporosis is a major global health concern, particularly affecting aging women, and necessitates innovative treatment options. Herbal medicine, with its multi-compound, multi-target characteristics, offers a promising approach for complex diseases. In this study, we applied multiscale network and random walk-based analyses to identify candidate herbs and their active ingredients for postmenopausal osteoporosis, focusing on their underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!