The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in -chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c02692 | DOI Listing |
Biosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria.
View Article and Find Full Text PDFNat Commun
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846-13114, Tehran, Iran.
In this research, graphene oxide-polyaniline (GO-PANI) nanocomposite was successfully synthesized and its catalytic performance was evaluated for the synthesis of N-aryl-1,4-dihydropyridine (1,4-DHP) and hydroquinoline derivatives. The GO nanosheets were prepared using the Hummers' method, and in-situ polymerization of aniline was conducted with ammonium persulfate (APS) serving as the polymerization initiator. The synthesized nanocomposite demonstrated notable efficiency, achieving yields of 80-94% for 1,4-DHP derivatives and 84-96% for hydroquinoline derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!