A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lessons Learned on Observed-to-Expected Analysis Using Spontaneous Reports During Mass Vaccination. | LitMetric

During the COVID-19 vaccination campaign, observed-to-expected analysis was used by the European Medicines Agency to contextualise data from spontaneous reports to generate real-time evidence on emerging safety concerns that may impact the benefit-risk profile of COVID-19 vaccines. Observed-to-expected analysis compares the number of cases spontaneously reported for an event of interest after vaccination ('observed') to the 'expected' number of cases anticipated to occur in the same number of individuals had they not been vaccinated. Observed-to-expected analysis is a robust methodology that relies on several assumptions that have been described in regulatory guidelines and scientific literature. The use of observed-to-expected analysis to support the safety monitoring of COVID-19 vaccines has provided valuable insights and lessons on its design and interpretability, which could prove to be beneficial in future analyses. When undertaking an observed-to-expected analysis within the context of safety monitoring, several aspects need attention. In particular, we emphasise the importance of stratified and harmonised data collection both for vaccine exposure and spontaneous reporting data, the need for alignment between coding dictionaries and the crucial role of accurate background incidence rates for adverse events of special interest. While these considerations and recommendations were determined in the context of the COVID-19 mass vaccination setting, they are generalisable in principle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182835PMC
http://dx.doi.org/10.1007/s40264-024-01422-8DOI Listing

Publication Analysis

Top Keywords

observed-to-expected analysis
24
spontaneous reports
8
mass vaccination
8
covid-19 vaccines
8
number cases
8
safety monitoring
8
observed-to-expected
6
analysis
6
lessons learned
4
learned observed-to-expected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!