The gas flaring network is an inseparable constituent commonly present in most of the oil and gas refineries and petrochemical facilities conferring reliable operational parameters. The improper disposal of burn-off gases improperly results in environmental problems and loss of economic resources. In this regard, waste to energy transforming nexus, in accord with the "carbon neutrality" term, has potentially emerged as a reasonable pathway to preserve our planet. In a transdisciplinary manner, the present review article deeply outlines the different up-to-date strategies developed to recover the emitted gases (flaring minimization) into different value-added products. To analyze the recovery potential of flare gases, different technologies, and decision-making factors have been critically reviewed to find the best recovery methods. We recommend more straightforward recovery methods despite lower profits. In this regard, electricity generation seems to be an appropriate option for application in small amounts of flaring. However, several flare gas utilization processes such as syngas manufacturing, reinjection of gas into petroleum reservoirs, and production of natural gas liquid (NGL) are also recommended as options because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. Moreover, the adopted computational multi-scale data assimilation for predictive modeling of flare gas recovery scenarios has been systematically reviewed, summarized, and inspected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-32864-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!